Skip to main content
Log in

Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We consider the heat transfer in surface wet grinding, assuming a constant heat-transfer coefficient over the workpiece surface, as well as the usual heat flux profiles entering into the workpiece given in the literature, i.e. constant, linear, parabolic and triangular. On the one hand, we calculate in the stationary regime, the temperature distribution on the workpiece surface in series form. These series converge only for Biot numbers less than unity. By using convergence acceleration, these series can be computed more rapidly than its equivalent integral form without any appreciable loss of accuracy. Also, we avoid the numerical integration problems found in the expressions given in the literature. Moreover, the expressions found can be used to compute the maximum temperature of the workpiece very rapidly. On the other hand, we have refined some approximations for the relaxation time in wet grinding, and we have derived some new expressions for dry grinding. The relaxation time has been applied to compute the temperature field inside the workpiece in the stationary regime, obtaining a more rapid numerical evaluation without any appreciable loss of precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives. Industrial Press Inc., New York

    Google Scholar 

  2. Guo C, Malkin S (1995) Analysis of energy partition in grinding. J Eng Ind 117(1):55

    Article  Google Scholar 

  3. Malkin S, Anderson R (1974) Thermal aspects of grinding: part 1 energy partition. J Eng Ind 96(4):1177

    Article  Google Scholar 

  4. Lavine A, von Turkovich B (1991) Thermal aspects of grinding: the effect of heat generation at the shear planes. CIRP Ann Manuf Technol 40(1):343

    Article  Google Scholar 

  5. Lavine A (2000) An exact solution for surface temperature in down grinding. Int J Heat Mass Transf 43(24):4447

    Article  MATH  Google Scholar 

  6. Jaeger J (1942) Moving sources of heat and the temperature of sliding contacts. Proc R Soc NSW 76(76):203–224

    Google Scholar 

  7. DesRuisseaux N, Zerkle R (1970) Temperature in semi-infinite and cylindrical bodies subjected to moving heat sources and surface cooling. J Heat Transf 92(3):456

    Article  Google Scholar 

  8. Jaeger J, Carslaw H (1988) Conduction of heat in solids. Clarendon, Oxford

    MATH  Google Scholar 

  9. Lavine A, Malkin S, Jen T (1989) Thermal aspects of grinding with CBN wheels. CIRP Ann Manuf Technol 38(1):557

    Article  Google Scholar 

  10. Sauer W (1971) Thermal aspects of grinding. Ph.D. thesis, Carnegie-Mellon University

  11. Guo C, Wu Y, Varghese V, Malkin S (1999) Temperatures and energy partition for grinding with vitrified CBN wheels. CIRP Ann Manuf Technol 48(1):247

    Article  Google Scholar 

  12. Anderson D, Warkentin A, Bauer R (2008) Experimental validation of numerical thermal models for dry grinding. J Mater Process Technol 204(1–3):269

    Article  Google Scholar 

  13. Mahdi M, Zhang L (1998) Applied mechanics in grinding VI. Residual stresses and surface hardening by coupled thermo-plasticity and phase transformation. Int J Mach Tool Manuf 38(10–11):1289

    Article  Google Scholar 

  14. Zarudi I, Zhang L (2002) A revisit to some wheel–workpiece interaction problems in surface grinding. Int J Mach Tool Manuf 42(8):905

    Article  Google Scholar 

  15. Rowe W, Black S, Mills B, Qi H, Morgan M (1995) Experimental investigation of heat transfer in grinding. CIRP Ann Manuf Technol 44(1):329

    Article  Google Scholar 

  16. Brosse A, Naisson P, Hamdi H, Bergheau J (2008) Temperature measurement and heat flux characterization in grinding using thermography. J Mater Process Technol 201(1–3):590

    Article  Google Scholar 

  17. González-Santander JL (2016) Maximum temperature and relaxation time in wet surface grinding for a general heat flux profile. Math Probl Eng 2016:5387612

    MathSciNet  MATH  Google Scholar 

  18. González-Santander JL, Martín G (2015) A theorem for finding maximum temperature in wet grinding. Math Probl Eng 2015:150493

    MathSciNet  MATH  Google Scholar 

  19. González-Santander J, Martín G (2015) Closed form expression for the surface temperature in wet grinding: application to maximum temperature evaluation. J Eng Math 90(1):173

    Article  MathSciNet  MATH  Google Scholar 

  20. Cohen H, Villegas F, Zagier D (2000) Convergence acceleration of alternating series. Exp Math 9(1):3

    Article  MathSciNet  MATH  Google Scholar 

  21. González-Santander JL (2017) Efficient series expansions of the temperature field in dry surface grinding for usual heat flux profiles. Math Probl Eng 2017:1856523

    Article  MathSciNet  Google Scholar 

  22. Oldham K, Myland J, Spanier J (2010) An atlas of functions: with equator, the atlas function calculator. Springer, Berlin

    MATH  Google Scholar 

  23. Olver F, Lozier D, Boisvert R, Clark C (2010) NIST handbook of mathematical functions hardback and CD-ROM. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  24. González-Santander J (2014) Calculation of an integral arising in dry flat grinding for a general heat flux profile. Application to maximum temperature evaluation. J Eng Math 88(1):137

    Article  MathSciNet  MATH  Google Scholar 

  25. González-Santander J (2016) Analytic solution for maximum temperature during cut in and cut out in surface dry grinding. Appl Math Model 40(3):2356

    Article  Google Scholar 

  26. Murav’ev V, Yakimov A, Chernyshev A (2003) Effect of deformation, welding, and electrocontact heating on the properties of titanium alloy VT20 in pressed and welded structures. Met Sci Heat Treat 45(11–12):419

    Article  Google Scholar 

  27. Skuratov D, Ratis Y, Selezneva I, Pérez J, Fernández de Córdoba P, Urchueguía J (2007) Mathematical modelling and analytical solution for workpiece temperature in grinding. Appl Math Model 31(6):1039

    Article  MATH  Google Scholar 

  28. Yasui H (1983) Influence of fluid type on wet grinding temperature. Bull Jpn Soc Precis Eng 17(2):133

    MathSciNet  Google Scholar 

  29. Suhadolnik A (2012) Appl Math Lett 25(11):1755

    Article  MathSciNet  Google Scholar 

  30. Hoffman J, Frankel S (2001) Numerical methods for engineers and scientists. CRC Press, Boca Raton

    Google Scholar 

  31. González-Santander J, Martín G (2014) Numerical methods for engineers and scientists. Math Method Appl Sci 37(18):2906

    Article  Google Scholar 

  32. González-Santander J, Espinós-Morató H (2018) Depth of thermal penetration in straight grinding. Int J Adv Manuf Technol 96(9–12):3175

    Article  Google Scholar 

  33. Lebedev N (1965) Special functions and their applications. Prentice-Hall Inc., Upper Saddle River

    Book  MATH  Google Scholar 

  34. Apostol T (1967) Calculus, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  35. Gradsthteyn I, Ryzhik M (2007) Numerical methods for engineers and scientists, 7th edn. Academic Press Inc, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. González-Santander.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: A useful expansion

The \(w\left( z\right) \) function is an entire function defined as [23, Eq. 7.2.3]

$$\begin{aligned} w\left( z\right) =\mathrm{e}^{-z^{2}}\mathrm {erfc}\left( -\mathrm{i}z\right) . \end{aligned}$$
(98)

This function has the following expansion [23, Eq. 7.6.3]

$$\begin{aligned} w\left( z\right) =\sum _{n=0}^{\infty }\frac{\left( \mathrm{i}z\right) ^{n}}{\varGamma \left( \frac{n}{2}+1\right) }. \end{aligned}$$
(99)

Therefore, taking \(z=\mathrm{i}x\) in (98) and (99), and equating both results, we obtain

$$\begin{aligned} \mathrm{e}^{x^{2}}\mathrm {erfc}\left( x\right) =\sum _{n=0}^{\infty }\frac{\left( -x\right) ^{n}}{\varGamma \left( \frac{n}{2}+1\right) }. \end{aligned}$$
(100)

Notice that from (100), we have

$$\begin{aligned} 1-\sqrt{\pi }x\,\mathrm{e}^{x^{2}}\mathrm {erfc}\left( x\right) =1+\sqrt{\pi } \sum _{n=0}^{\infty }\frac{\left( -x\right) ^{n+1}}{\varGamma \left( \frac{n}{2} +1\right) } =1+\sqrt{\pi }\sum _{n=1}^{\infty }\frac{\left( -x\right) ^{n}}{\varGamma \left( \frac{n+1}{2}\right) }. \end{aligned}$$
(101)

Now, using the fact that \(\varGamma \left( \frac{1}{2}\right) =\sqrt{\pi }\) [23, Eq. 5.4.6], we finally arrive at

$$\begin{aligned} 1-\sqrt{\pi }x\,\mathrm{e}^{x^{2}}\mathrm {erfc}\left( x\right) =\sqrt{\pi } \sum _{n=0}^{\infty }\frac{\left( -x\right) ^{n}}{\varGamma \left( \frac{n+1}{2} \right) }. \end{aligned}$$
(102)

Appendix B: The \(\mathrm {Yu}\left( x\right) \) function

Let us define the function, \(\forall m=0,1,2,\ldots \)

$$\begin{aligned} \widetilde{\mathrm {Yu}}_{\nu }^{\left( m\right) }\left( x\right) =\int _{0}^{x}\mathrm{e}^{-t}t^{m}\left| t\right| ^{\nu }K_{\nu }\left( \left| t\right| \right) \mathrm {d}t. \end{aligned}$$
(103)

To calculate the above integral (103), we use the following result [24]

$$\begin{aligned} {\mathcal {J}}_{m,\nu }^{\pm }\left( x\right)&=\int _{0}^{x}\mathrm{e}^{\pm t}t^{\nu +m}K_{\nu }\left( t\right) \mathrm {d}t \nonumber \\&=\mathrm{e}^{\pm x}x^{\nu +m+1}\left\{ K_{\nu }\left( x\right) \Phi _{\nu }^{\left( m\right) }\left( \mp x\right) \pm K_{\nu +1}\left( x\right) \Psi _{\nu }^{\left( m\right) }\left( \mp x\right) \right\} +A_{m,\nu }^{\pm }, \end{aligned}$$
(104)

where the following polynomials in 1 / x have been defined:

$$\begin{aligned} \Phi _{\nu }^{\left( m\right) }\left( x\right) =\frac{1}{2\nu +m+1} \left[ 1-\frac{m}{2\nu +2m+1}\,_{3}F_{1}\left( \left. \begin{array}{c} 1,1-m,-1-m-2\nu \\ 1/2-m-\nu \end{array} \right| \frac{-1}{2x}\right) \right] , \end{aligned}$$
(105)

and

$$\begin{aligned} \Psi _{\nu }^{\left( m\right) }\left( x\right) =\frac{1}{2\nu +2m+1} \,_{3}F_{1}\left( \left. \begin{array}{c} 1,-m,-m-2\nu \\ 1/2-m-\nu \end{array} \right| \frac{-1}{2x}\right) . \end{aligned}$$
(106)

Also, the integration constant is set as

$$\begin{aligned} A_{m,\nu }^{\pm }=\left( \mp 1\right) ^{m+1}2^{\nu +m}\frac{m!\varGamma \left( \nu +m+1\right) \varGamma \left( 2\nu +m+1\right) }{\varGamma \left( 2\nu +2m+2\right) }. \end{aligned}$$
(107)

\(\forall x>0\), it is clear that we can drop the absolute value bars in (103), and thus

$$\begin{aligned} \widetilde{\mathrm {Yu}}_{\nu }^{\left( m\right) }\left( x\right) =\int _{0}^{x}\mathrm{e}^{-t}t^{m}t^{\nu }K_{\nu }\left( t\right) \mathrm {d}t={\mathcal {J}} _{m,\nu }^{-}\left( x\right) . \end{aligned}$$
(108)

Also, \(\forall x<0\), we can replace the absolute value bars by a “−” sign, so that by performing the change \(t=-\tau \), we arrive at

$$\begin{aligned} \widetilde{\mathrm {Yu}}_{\nu }^{\left( m\right) }\left( x\right)= & {} \int _{0}^{x}\mathrm{e}^{-t}\left( -t\right) ^{m}t^{\nu }K_{\nu }\left( -t\right) \mathrm {d}t =\left( -1\right) ^{m+1}\int _{0}^{-x}\mathrm{e}^{\tau }\tau ^{m}\tau ^{\nu }K_{\nu }\left( \tau \right) \mathrm {d}\tau =\left( -1\right) ^{m+1}{\mathcal {J}}_{m,\nu }^{+}\left( -x\right) . \end{aligned}$$
(109)

Then, from (104), (108) and (109), and using the property \(x=\mathrm {sgn}\left( x\right) \left| x\right| \), it is easy to verify that \(\forall x\ne 0\)

$$\begin{aligned} \widetilde{\mathrm {Yu}}_{\nu }^{\left( m\right) }\left( x\right) =x^{m+1}\left| x\right| ^{\nu }\mathrm{e}^{-x} \left\{ K_{\nu }\left( \left| x\right| \right) \Phi _{\nu }^{\left( m\right) }\left( x\right) -\mathrm {sgn}\left( x\right) K_{\nu +1}\left( \left| x\right| \right) \Psi _{\nu }^{\left( m\right) }\left( x\right) \right\} +A_{m,\nu }^{+}. \end{aligned}$$
(110)

Now, taking limits in (103) as \(x\rightarrow 0\), we have

$$\begin{aligned} \lim _{x\rightarrow 0}\widetilde{\mathrm {Yu}}_{\nu }^{\left( m\right) }\left( x\right) =\lim _{x\rightarrow 0}\int _{0}^{x}\mathrm{e}^{-t}t^{m}\left| t\right| ^{\nu }K_{\nu }\left( \left| t\right| \right) \mathrm {d}t. \end{aligned}$$
(111)

\(\forall \nu \ne 0\), we can use the limiting form [23, Eq. 10.30.2]

$$\begin{aligned} K_{\nu }\left( x\right) \approx \frac{2^{\nu -1}\varGamma \left( \nu \right) }{ x^{\nu }},\quad x\rightarrow 0, \end{aligned}$$
(112)

thus, using the definition of the lower incomplete gamma function \( \gamma \left( a,z\right) \) [23, Eq. 8.2.1], we arrive at

$$\begin{aligned} \lim _{x\rightarrow 0}\widetilde{\mathrm {Yu}}_{\nu }^{\left( m\right) }\left( x\right) =2^{\nu -1}\varGamma \left( \nu \right) \lim _{x\rightarrow 0}\int _{0}^{x}\mathrm{e}^{-t}t^{m}\mathrm {d}t =2^{\nu -1}\varGamma \left( \nu \right) \lim _{x\rightarrow 0}\gamma \left( m+1,x\right) =0. \end{aligned}$$
(113)

\(\forall \nu =0\), we can use the limiting form [33, Eq. 5.16.4]

$$\begin{aligned} K_{0}\left( x\right) \approx \log \left( \frac{2}{x}\right) ,\quad x\rightarrow 0, \end{aligned}$$
(114)

thus

$$\begin{aligned} \lim _{x\rightarrow 0}\widetilde{\mathrm {Yu}}_{0}^{\left( m\right) }\left( x\right) =\lim _{x\rightarrow 0}\int _{0}^{x}\mathrm{e}^{-t}\left( \log 2-\log t\right) \mathrm {d}t. \end{aligned}$$
(115)

Splitting (115) in two terms, on the one hand, we have

$$\begin{aligned} I_{1}=\log 2\int _{0}^{x}\mathrm{e}^{-t}\mathrm {d}t=-\log 2\left( \mathrm{e}^{-x}-1\right) . \end{aligned}$$
(116)

On the other hand,

$$\begin{aligned} I_{2}=\int _{0}^{x}\mathrm{e}^{-t}\log t\ \mathrm {d}t=\underset{-\gamma }{\underbrace{ \int _{0}^{\infty }\mathrm{e}^{-t}\log t\ \mathrm {d}t}}-\int _{x}^{\infty }\mathrm{e}^{-t}\log t\ \mathrm {d}t, \end{aligned}$$
(117)

where, according to [33, Eq. 1.3.19], the first integral of (117) is just \(-\gamma \), and the second integral can be integrated by parts, obtaining

$$\begin{aligned} I_{2}=-\gamma +\mathrm{e}^{-x}\log x+\underset{\varGamma \left( 0,x\right) }{\underbrace{ \int _{x}^{\infty }\frac{\mathrm{e}^{-t}}{t}\mathrm {d}t}}, \end{aligned}$$
(118)

where we have applied the definition of the upper incomplete gamma function \(\varGamma \left( a,x\right) \) [23, Eq. 8.2.2]. Inserting in ( 115) the results (116) and (118), we get

$$\begin{aligned} \lim _{x\rightarrow 0}\widetilde{\mathrm {Yu}}_{0}^{\left( m\right) }\left( x\right) =\lim _{x\rightarrow 0}\left( \log 2+\gamma +\mathrm{e}^{-x}\log \left( \frac{ x}{2}\right) +\varGamma \left( 0,x\right) \right) . \end{aligned}$$
(119)

Using the limiting form [22, Eq. 45:3:2]

$$\begin{aligned} \varGamma \left( 0,x\right) \approx -\gamma -\log \left( x\right) +x,\quad x\rightarrow 0, \end{aligned}$$
(120)

we finally conclude that

$$\begin{aligned} \lim _{x\rightarrow 0}\widetilde{\mathrm {Yu}}_{0}^{\left( m\right) }\left( x\right) =0. \end{aligned}$$
(121)

Therefore, collecting the results (110), (113) and (121), we have

$$\begin{aligned} \widetilde{\mathrm {Yu}}_{\nu }^{\left( m\right) }\left( x\right) =\int _{0}^{x}\mathrm{e}^{-t}t^{m}\left| t\right| ^{\nu }K_{\nu }\left( \left| t\right| \right) \mathrm {d}t =\left\{ \begin{array}{ll} x^{m+1}\left| x\right| ^{\nu }\mathrm{e}^{-x}F_{\nu }^{\left( m\right) }\left( x\right) +A_{m,\nu }^{+} &{}\quad x\ne 0, \\ 0 &{}\quad x=0, \end{array} \right. \end{aligned}$$
(122)

where we have set

$$\begin{aligned} F_{\nu }^{\left( m\right) }\left( x\right) =K_{\nu }\left( \left| x\right| \right) \Phi _{\nu }^{\left( m\right) }\left( x\right) -\mathrm { sgn}\left( x\right) K_{\nu +1}\left( \left| x\right| \right) \Psi _{\nu }^{\left( m\right) }\left( x\right) . \end{aligned}$$
(123)

Notice that we can drop the integration constant \(A_{m,\nu }^{+}\) if we are integrating in a definite interval \(\left( a,b\right) \). Thereby, if we define the function

$$\begin{aligned} \mathrm {Yu}_{\nu }^{\left( m\right) }\left( x\right) =\left\{ \begin{array}{ll} x^{m+1}\left| x\right| ^{\nu }\mathrm{e}^{-x}\left\{ K_{\nu }\left( \left| x\right| \right) \Phi _{\nu }^{\left( m\right) }\left( x\right) -\mathrm {sgn}\left( x\right) K_{\nu +1}\left( \left| x\right| \right) \Psi _{\nu }^{\left( m\right) }\left( x\right) \right\} &{} \quad x\ne 0, \\ 0 &{}\quad x=0, \end{array} \right. \end{aligned}$$
(124)

then

$$\begin{aligned} \left. \mathrm {Yu}_{\nu }^{\left( m\right) }\left( x\right) \right| _{x=a}^{b}=\int _{a}^{b}\mathrm{e}^{-t}t^{m}\left| t\right| ^{\nu }K_{\nu }\left( \left| t\right| \right) \mathrm {d}t. \end{aligned}$$
(125)

1.1 Appendix B.1: Convergence condition for \({\mathcal {T}}^{\left( k\right) }\left( X,0\right) \)

To see that the series given in (29) for \({\mathcal {T}} ^{\left( k\right) }\left( X,0\right) \) converges if and only if \(\mathrm {Bi\, }<1\), it suffices to prove the following theorem, recalling that we are considering \(\mathrm {Bi\,}\ge 0\):

Theorem 1

The alternating series

$$\begin{aligned} \sum _{n=0}^{\infty }\frac{\left( -\mathrm {Bi\,}/\sqrt{2}\right) ^{n}}{\varGamma \left( \frac{n+1}{2}\right) }\mathrm {Yu}_{n/2}^{\left( j\right) }\left( u\right) \end{aligned}$$
(126)

converges if and only if \(\mathrm {Bi\,}<1\).

Proof

First, we prove the necessary condition. According to [34, theorem 10.6], if a series \(\sum _{n=0}^{\infty }a_{n}\) converges, then \( \underset{n\rightarrow \infty }{\lim }a_{n}=0\). Therefore, the series given in (126), converges if

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\frac{\left( -\mathrm {Bi\,}/\sqrt{2} \right) ^{n}}{\varGamma \left( \frac{n+1}{2}\right) }\mathrm {Yu}_{n/2}^{\left( j\right) }\left( u\right) =0. \end{aligned}$$
(127)

Notice that, according to (125),

$$\begin{aligned} \mathrm {Yu}_{\nu }^{\left( j\right) }\left( u\right) =\int _{0}^{u}\mathrm{e}^{-t}t^{j}\left| t\right| ^{\nu }K_{\nu }\left( \left| t\right| \right) \mathrm {d}t, \end{aligned}$$
(128)

and, according to [23, Eq. 10.41.2],

$$\begin{aligned} K_{\nu }\left( z\right) \approx \sqrt{\frac{\pi }{2\nu }}\left( \frac{\mathrm{e}z}{ 2\nu }\right) ^{-\nu },\qquad \nu \rightarrow \infty , \end{aligned}$$
(129)

and thus,

$$\begin{aligned} \lim _{\nu \rightarrow \infty }\mathrm {Yu}_{\nu }^{\left( j\right) }\left( u\right) =\lim _{\nu \rightarrow \infty }\sqrt{\frac{\pi }{2\nu }}\left( \frac{\mathrm{e}}{ 2\nu }\right) ^{-\nu }\int _{0}^{u}\mathrm{e}^{-t}t^{j}\mathrm {d}t =\sqrt{\frac{\pi }{2}}\gamma \left( j+1,u\right) \lim _{\nu \rightarrow \infty }\sqrt{\frac{1}{\nu }}\left( \frac{\mathrm{e}}{2\nu }\right) ^{-\nu }, \end{aligned}$$
(130)

where \(\gamma \left( a,x\right) \) denotes the lower incomplete gamma function [23, Eq. 8.2.1]. Notice as well that, according to Stirling’s formula [23, Eq. 5.11.3],

$$\begin{aligned} \varGamma \left( \nu \right) \approx \left( \frac{\nu }{\mathrm{e}}\right) ^{\nu }\sqrt{ \frac{2\pi }{\nu }},\qquad \nu \rightarrow \infty , \end{aligned}$$
(131)

so that, applying the duplication formula [23, Eq. 5.5.5],

$$\begin{aligned} \varGamma \left( 2z\right) =\frac{2^{2z-1}}{\sqrt{\pi }}\varGamma \left( z\right) \varGamma \left( z+\frac{1}{2}\right) ,\quad 2z\ne 0,-1,-2,\ldots , \end{aligned}$$
(132)

we obtain the following asymptotic formula:

$$\begin{aligned} \varGamma \left( \nu +\frac{1}{2}\right) \approx \sqrt{2\pi }\left( \frac{\nu }{\mathrm{e}}\right) ^{\nu },\quad \nu \rightarrow \infty . \end{aligned}$$
(133)

Therefore, from (130) and (133), we have

$$\begin{aligned} \underset{\nu \rightarrow \infty }{\lim }\frac{\mathrm {Yu}_{\nu }^{\left( j\right) }\left( u\right) }{\varGamma \left( \nu +\frac{1}{2}\right) }=\frac{1}{ 2}\gamma \left( j+1,u\right) \underset{\nu \rightarrow \infty }{\lim }\frac{ 2^{\nu }}{\sqrt{\nu }}. \end{aligned}$$
(134)

Therefore, taking \(\nu =n/2\) in (134), we may calculate the following limit as

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\frac{\left( -\mathrm {Bi\,}/\sqrt{2} \right) ^{n}}{\varGamma \left( \frac{n+1}{2}\right) }\mathrm {Yu}_{n/2}^{\left( j\right) }\left( u\right) =\frac{1}{\sqrt{2}}\gamma \left( j+1,u\right) \underset{n\rightarrow \infty }{\lim }\frac{\left( -\mathrm {Bi}\right) ^{n}}{ \sqrt{n}}. \end{aligned}$$
(135)

Thus, the convergence condition (127) is satisfied when \( \mathrm {Bi}<1\), as we wanted to prove.

Next, we prove the sufficient condition. Note that (126) is an alternating series, and thus,

$$\begin{aligned} \sum _{n=0}^{\infty }\frac{\left( -\mathrm {Bi\,}/\sqrt{2}\right) ^{n}}{\varGamma \left( \frac{n+1}{2}\right) }\mathrm {Yu}_{n/2}^{\left( j\right) }\left( u\right) <\sum _{n=0}^{\infty }\frac{\left( \mathrm {Bi\,}/\sqrt{2}\right) ^{n} }{\varGamma \left( \frac{n+1}{2}\right) }\left| \mathrm {Yu}_{n/2}^{\left( j\right) }\left( u\right) \right| . \end{aligned}$$
(136)

According to (125), we have

$$\begin{aligned} \left| \mathrm {Yu}_{\nu }^{\left( j\right) }\left( u\right) \right|<\int _{0}^{\left| u\right| }\mathrm{e}^{-t}t^{j}t^{\nu }K_{\nu }\left( t\right) \mathrm {d}t<M\int _{0}^{\left| u\right| }t^{\nu }K_{\nu }\left( t\right) \mathrm {d}t<M\int _{0}^{\infty }t^{\nu }K_{\nu }\left( t\right) \mathrm {d}t, \end{aligned}$$
(137)

where we have set the finite bound

$$\begin{aligned} M=\max _{t\in \left( 0,\left| u\right| \right) }\left( \mathrm{e}^{-t}t^{j}\right) <\infty . \end{aligned}$$
(138)

Applying the following integral \(\forall \mu =\nu \) [35, Eq. 6.561.16],

$$\begin{aligned} \int _{0}^{\infty }x^{\mu }K_{\nu }\left( x\right) \mathrm {d}x= & {} 2^{\mu -1}a^{-\mu -1}\varGamma \left( \frac{1+\mu +\nu }{2}\right) \varGamma \left( \frac{1+\mu -\nu }{2}\right) , \nonumber \\ \mathrm {Re}\left( \mu +1\pm \nu \right)> & {} 0,\quad \mathrm {Re\ }a>0, \end{aligned}$$
(139)

we obtain

$$\begin{aligned} \left| \mathrm {Yu}_{n/2}^{\left( j\right) }\left( u\right) \right| < \frac{M\sqrt{\pi }}{2}2^{n/2}\varGamma \left( \frac{n+1}{2}\right) . \end{aligned}$$
(140)

Inserting (140) in (136), we arrive at

$$\begin{aligned} \sum _{n=0}^{\infty }\frac{\left( -\mathrm {Bi\,}/\sqrt{2}\right) ^{n}}{\varGamma \left( \frac{n+1}{2}\right) }\mathrm {Yu}_{n/2}^{\left( j\right) }\left( u\right) <\frac{M\sqrt{\pi }}{2}\sum _{n=0}^{\infty }\mathrm {Bi\,}^{n}, \end{aligned}$$
(141)

which converges if \(\mathrm {Bi}<1\), as we wanted to prove. \(\square \)

Appendix C: The Lambert W function

In order to solve x from

$$\begin{aligned} \exp \left( x^{a}\right) x^{b}=A, \end{aligned}$$
(142)

power to a / b both sides and multiply the resulting equation by a / b to obtain

$$\begin{aligned} \exp \left( \frac{a}{b}x^{a}\right) \frac{a}{b}x^{a}=\frac{a}{b}A^{a/b}. \end{aligned}$$
(143)

Performing the change \(z=\frac{a}{b}x^{a}\), we have

$$\begin{aligned} \mathrm{e}^{z}z=\frac{a}{b}A^{a/b}. \end{aligned}$$
(144)

Knowing that the Lambert W function is the inverse function of \( \mathrm{e}^{z}z\) [23, Sect. 4.13], we solve the above equation as

$$\begin{aligned} z=\mathrm {W}\left( \frac{a}{b}A^{a/b}\right) , \end{aligned}$$
(145)

and hence, undoing the change that was performed, we finally obtain

$$\begin{aligned} x=\left[ \frac{b}{a}\mathrm {W}\left( \frac{a}{b}A^{a/b}\right) \right] ^{1/a}. \end{aligned}$$
(146)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Santander, J.L., Monreal, L. Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile. J Eng Math 116, 101–122 (2019). https://doi.org/10.1007/s10665-019-10004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-019-10004-y

Keywords

Navigation