Skip to main content
Log in

An analysis of the transient regime temperature field in wet grinding

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the Samara–Valencia model for heat transfer in grinding is considered. This model is particularized to the case of wet grinding, assuming a constant heat transfer coefficient on the workpiece surface and a constant heat flux profile entering into the workpiece, obtaining a solution for the temperature field in the transient regime. Performing the limit \(t\rightarrow \infty \) in this solution we get a formula analytically equivalent to the well-known solution given by DesRuisseaux for the steady-state temperature field. Also, we derive for the transient regime very simple formulas for relaxation times in wet and dry grinding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It should be noted that in [11, Eqn. 22] the temperature field is expressed in terms of dimensionless variables and the initial temperature \(T_{\text {r}}\) is set to zero.

References

  1. Malkin S (1989) Grinding technology: theory and application of machining with abrasives. Ellis Horwood Ltd, Wiley, New York

    Google Scholar 

  2. Carslaw H, Jaeger JC (1986) Conduction of heat in solids. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  3. Guo C, Malkin S (1995) Analysis of energy partition in grinding. J Eng Ind 117:55–61

    Article  Google Scholar 

  4. Malkin S, Anderson R (1974) Thermal aspects of grinding, part I: energy partition. J Manuf Sci Eng 96:1177–1183

    Google Scholar 

  5. Lavine A (1991) Thermal aspects of grinding: the effects of heat generation at the shear planes. Annals of CIRP 40:343–345

    Article  Google Scholar 

  6. Lavine A (2000) An exact solution for surface temperature in down grinding. Int J Heat Mass Transf 43:4447–4456

    Article  MATH  Google Scholar 

  7. Pérez J, Hoyas S, Skuratov D, Ratis Y, Selezneva I, Urchueguía J (2008) Heat transfer analysis of intermittent grinding processes. Int J Heat Mass Transf 51:4132–4138

    Article  MATH  Google Scholar 

  8. Guo C, Malkin S (1995) Analysis of transient temperature in grinding. J Manuf Sci Eng 117:571–577

    Google Scholar 

  9. Skuratov D, Ratis Y, Selezneva I, Pérez J, Fernández de Córdoba P, Urchueguía J (2007) Mathematical modelling and analytical solution for workpiece temperature in grinding. Appl Math Model 31:1039–1047

  10. González-Santander JL, Pérez J, Ferná ndez de Córdoba P, Isidro JM (2009) An analysis of the temperature field of the workpiece in dry continuous grinding. J Eng Math 67:165–174

    Article  Google Scholar 

  11. Jaeger JC (1942) Moving sources of heat and the temperature at sliding contracts. Proc R Soc New South Wales 76:204–224

    Google Scholar 

  12. DesRuisseaux NR (1968) Thermal aspects of grinding processes, PhD dissertation, University of Cincinnati

  13. DesRuisseaux NR, Zerkle RD (1970) Temperature in semi-infinite and cylindrical bodies subjected to moving heat surfaces and surface cooling. J Heat Transf 92:456–464

    Article  Google Scholar 

  14. Abramowitz M, Stegun I (1972) Handbook of mathematical functions. National Bureau of Standards, Washington

    MATH  Google Scholar 

  15. Zhang LC, Suto T, Noguchi TH, Waida T (1992) An overview of applied mechanics in grinding. Manuf Rev 4:261–273

    Google Scholar 

  16. Mahdi M, Zhang L (1998) Applied mechanics in grinding-VI. Residual stresses and surface hardening by coupled thermo-plasticity and phase transformation. Int J Mach Tools Manuf 38:1289–1304

    Article  Google Scholar 

  17. Zhang LC, Suto T, Noguchi H, Waida T (1993) Applied mechanics in grinding. Part II: modelling of elastic modulus of wheel and interface forces. Int J Mach Tools Manuf 33:245–255

    Article  Google Scholar 

  18. Guo C, Wu Y, Varghese V, Malkin S (1999) Temperatures and energy partition for grinding with vitrified CBN wheels. Ann CIRP 42:247–250

    Article  Google Scholar 

  19. Zarudi I, Zhang LC (2002) A revisit to some wheel-workpiece interaction problems in surface grinding. Int J Mach Tools Manuf 42:905–913

    Article  Google Scholar 

  20. Lavine AS (1988) A simple model for convective cooling during the grinding process. J Eng Ind 110:1–6

    Article  Google Scholar 

  21. González-Santander JL, Valdés Placeres JM, Isidro JM (2011) Exact solution for the time-dependent temperature field in dry grinding: application to segmental wheels. Math Probl Eng 2011: 927876, 1–28

  22. Lebedev NN (1965) Special functions and their applications. Dover, New York

    MATH  Google Scholar 

  23. González-Santander JL (2009) Modelización matem ática de la transmisión de calor en el proceso del rectificado plano industrial, Ph. D. dissertation, Universidad Politécnica de Valencia

  24. Oldham KB, Myland JC, Spanier J (2008) An atlas of functions, 2nd edn. Springer, New York

    MATH  Google Scholar 

  25. Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv Comput Math 5:329–359

    Article  MATH  MathSciNet  Google Scholar 

  26. Murav’ev VI, Yakimov AV, Chernysev AV (2003) Effect of deformation, welding, and electrocontact heating on the properties of titanium alloy VT20 in pressed and welded structures. Met Sci Heat Treat 45:419–422

    Article  Google Scholar 

  27. Spiegel MR (1968) Mathematical handbook of formulas and tables. McGraw-Hill, New York

    Google Scholar 

  28. Gradsthteyn IS, Ryzhik IM (2007) Table of integrals, series and products. Academic Press Inc., New York

    Google Scholar 

  29. González-Santander JL, Martín G (2014) Closed form expression for the surface temperature in wet grinding: application to maximum temperature evaluation. J Eng Math. doi:10.1007/s10665-014-9716-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. González-Santander.

Appendix A

Appendix A

1.1 A.1 Derivation of (5)

The heat equation for an instantaneous point heat source is

$$\begin{aligned} \frac{\partial G}{\partial t}-k\ \nabla ^{2}G=Q\ \delta \left( \vec {r}-\vec {r}^{\prime }\right) \ \delta \left( t-t^{\prime }\right) , \end{aligned}$$
(145)

subject to the boundary condition

$$\begin{aligned} \frac{\partial G}{\partial z}{\bigg \vert _{z=0}}=h_{0} G{\bigg \vert _{z=0}}, \end{aligned}$$
(146)

and the initial condition

$$\begin{aligned} \left. G\right| _{t=t^{\prime }}=0. \end{aligned}$$

We may split \(G\) into two components:

$$\begin{aligned} G=G_{1}+G_{2}. \end{aligned}$$
(147)

On the one hand, \(G_{1}\) satisfies the heat equation (145) for \(z>0\), with a boundary condition as in (146) that is, however, homogeneous,

$$\begin{aligned} \frac{\partial G_{1}}{\partial z}{\bigg \vert _{z=0}}=0, \end{aligned}$$
(148)

and a homogeneous initial condition as well,

$$\begin{aligned} \left. G_{1}\right| _{t=t^{\prime }}=0. \end{aligned}$$

On the other hand, \(G_{2}\) satisfies the heat equation (145), but without heat sources,

$$\begin{aligned} \frac{\partial G_{2}}{\partial t}-k\ \nabla ^{2}G_{2}=0,\quad z>0, \end{aligned}$$
(149)

with a homogeneous initial condition

$$\begin{aligned} \left. G_{2}\right| _{t=t^{\prime }}=0. \end{aligned}$$
(150)

The boundary condition that \(G_{2}\) must satisfy can be obtained by finding the derivative with respect to \(z\) in (147) and taking into account (148), (146), and (147), arriving at

$$\begin{aligned} \frac{\partial G_{2}}{\partial z}{\bigg \vert _{z=0}}=h_{0}\left[ G_{1}+G_{2}\right] _{z=0}. \end{aligned}$$
(151)

Since \(G_{1}\) satisfies the heat equation for an instantaneous point source, we can apply the method of images to retain the boundary condition (148), using two point sources of the same strength \(Q\), one located at \(\left( x^{\prime },y^{\prime },z^{\prime }\right) \) and the other at \(\left( x^{\prime },y^{\prime },-z^{\prime }\right) \). Since the Green function for an infinite solid \(G_{\text {inf}}\) is [2, §10.2 (2)],

$$\begin{aligned} G_{\text {inf}}\left( \vec {r},t;\vec {r}^{\prime },t^{\prime }\right) =\frac{Q }{8\left[ \pi k\left( t-t^{\prime }\right) \right] ^{3/2}}\exp \left( -\frac{ \left( \vec {r}-\vec {r}^{\prime }\right) ^{2}}{4k\left( t-t^{\prime }\right) } \right) , \quad t>t^{\prime }, \end{aligned}$$
(152)

we have, for \(t>t^{\prime }\),

$$\begin{aligned} G_{1}&=G_{\text {inf}}\left( \vec {r},t;x^{\prime },y^{\prime },z^{\prime },t^{\prime }\right) +G_{\text {inf}}\left( \vec {r},t;x^{\prime },y^{\prime },-z^{\prime },t^{\prime }\right) \nonumber \\&= \frac{Q}{8\left[ \pi k\left( t-t^{\prime }\right) \right] ^{3/2}}\exp \left( -\frac{\left( x-x^{\prime }\right) ^{2}+\left( y-y^{\prime }\right) ^{2}}{4k\left( t-t^{\prime }\right) }\right) \left[ \exp \left( -\frac{\left( z-z^{\prime }\right) ^{2}}{4k\left( t-t^{\prime }\right) }\right) +\exp \left( -\frac{\left( z+z^{\prime }\right) ^{2}}{4k\left( t-t^{\prime }\right) }\right) \right] . \end{aligned}$$
(153)

Once \(G_{1}\) is calculated, substituting (153) into (151) yields the following boundary condition:

$$\begin{aligned} \frac{\partial G_{2}}{\partial z}\bigg \vert _{z=0}&= \frac{h_{0}Q}{4 \left[ \pi k\left( t-t^{\prime }\right) \right] ^{3/2}}\exp \left( -\frac{ \left( x-x^{\prime }\right) ^{2}+\left( y-y^{\prime }\right) ^{2}+z^{\prime 2}}{4k\left( t-t^{\prime }\right) }\right) +h_{0}\left. G_{2}\right| _{z=0}. \end{aligned}$$
(154)

Carrying out a change of variables

$$\begin{aligned} \tau =t-t^{\prime } \end{aligned}$$
(155)

in (149) and in (154), we obtain

$$\begin{aligned} \frac{\partial G_{2}}{\partial \tau }-k\ \nabla ^{2}G_{2}=0,\quad z>0, \end{aligned}$$
(156)

and

$$\begin{aligned} \frac{\partial G_{2}}{\partial z}\bigg \vert _{z=0}&= \frac{h_{0}Q}{ 4\left( \pi k\tau \right) ^{3/2}}\exp \left( -\frac{\left( x-x^{\prime }\right) ^{2}+\left( y-y^{\prime }\right) ^{2}+z^{\prime 2}}{4k\tau }\right) +h_{0}\left. G_{2}\right| _{z=0}, \end{aligned}$$
(157)

where we recall

$$\begin{aligned} G_{2}=G_{2}\left( x,y,z,\tau ;\vec {r}^{\prime }\right) . \end{aligned}$$
(158)

Since the solid is infinite in \(x\), we may perform the Fourier transform in (158) on this variable \(x\):

$$\begin{aligned} \hat{G}_{2}\left( \omega _{x},y,z,t;\vec {r}^{\prime }\right) =\mathcal {F}_{x} \left[ G_{2}\right] =\frac{1}{2\pi }\int _{-\infty }^{\infty }G_{2}\left( x,y,z,\tau ;\vec {r}^{\prime }\right) \ {\text {e}}^{\mathrm{i}\omega _{x}x}{\text {d}}x. \end{aligned}$$

Applying the Fourier transform properties [27, Eqns. 33.22; 33.40], we have

$$\begin{aligned} \mathcal {F}_{x}\left[ \exp \left( -\frac{\left( x-x^{\prime }\right) ^{2}}{ 4k\tau }\right) \right] =\frac{\sqrt{k\tau }}{\sqrt{\pi }}\exp \left( -k\tau \omega _{x}^{2}+{\text {i}}\omega _{x}x^{\prime }\right) . \end{aligned}$$
(159)

Thus, according to (159), the boundary condition (157) is transformed into

$$\begin{aligned} \frac{\partial \hat{G}_{2}}{\partial z}\bigg \vert _{z=0}&= \frac{h_{0}Q}{4\pi ^{2}k\tau }\exp \left( -\frac{\left( y-y^{\prime }\right) ^{2}+z^{\prime 2}}{4k\tau }\right) \exp \left( -k\tau \omega _{x}^{2}+{\text {i}}\omega _{x}x^{\prime }\right) +h_{0}\left. \hat{G}_{2}\right| _{z=0}. \end{aligned}$$
(160)

Similarly, performing again the Fourier transform on (160) but on the variable \(y\), which is

$$\begin{aligned} \tilde{G}_{2}\left( \omega _{x},\omega _{y},z,\tau ;\vec {r}^{\prime }\right) =\mathcal {F}_{y}\left[ \hat{G}_{2}\right] =\frac{1}{2\pi }\int _{-\infty }^{\infty }\hat{G}_{2}\left( \omega _{x},y,z,\tau ;\vec {r}^{\prime }\right) \ {\text {e}}^{\mathrm{i}\omega _{y}y}\,{\text {d}}y, \end{aligned}$$

we obtain

$$\begin{aligned} \frac{\partial \tilde{G}_{2}}{\partial z}\bigg \vert _{z=0}&= \frac{ h_{0}Q}{4\pi ^{2}\sqrt{\pi k\tau }}\exp \left( -\frac{z^{\prime 2}}{4k\tau } -k\tau \left( \omega _{x}^{2}+\omega _{y}^{2}\right) \right) \exp \left[ {\text {i}}\left( \omega _{x}x^{\prime }+\omega _{y}y^{\prime }\right) \right] +h_{0}\left. \tilde{G}_{2}\right| _{z=0}. \end{aligned}$$
(161)

Last, we apply the Laplace transform on the variable \(\tau \), which is

$$\begin{aligned} \bar{G}_{2}\left( \omega _{x},\omega _{y},z,s;\vec {r}^{\prime }\right) = \mathcal {L}\left[ \tilde{G}_{2}\right] =\int _{0}^{\infty }e_{2}^{-s\tau } \tilde{G}_{2}\left( \omega _{x},\omega _{y},z,\tau ;\vec {r}^{\prime }\right) {\text {d}}\tau . \end{aligned}$$

To do so, we may apply the Laplace properties [14, Eqn. 29.2.13; 29.3.84]; thus,

$$\begin{aligned} \mathcal {L}\left[ \frac{1}{\sqrt{\pi k\tau }}\exp \left( -\frac{z^{\prime 2} }{4k\tau }-k\tau \left( \omega _{x}^{2}+\omega _{y}^{2}\right) \right) \right] =\frac{\exp \left( -z^{\prime }\sqrt{\omega _{x}^{2}+\omega _{y}^{2}+s/k}\right) }{k\sqrt{\omega _{x}^{2}+\omega _{y}^{2}+s/k}}. \end{aligned}$$
(162)

Therefore, applying (162), the boundary condition (161) becomes

$$\begin{aligned} \frac{\partial \bar{G}_{2}}{\partial z}\bigg \vert _{z=0}&= \frac{h_{0}Q}{4\pi ^{2}k}\frac{\exp \left( -z^{\prime }\sqrt{\omega _{x}^{2}+\omega _{y}^{2}+s/k}\right) }{\sqrt{\omega _{x}^{2}+\omega _{y}^{2}+s/k}}\exp \Big ( {\text {i}}\left[ \omega _{x}x^{\prime }+\omega _{y}y^{\prime }\right] \Big ) +h_{0}\left. \bar{G}_{2}\right| _{z=0}. \end{aligned}$$
(163)

As we have done with the boundary condition, we may transform the heat equation for \(G_{2}\), (156),

$$\begin{aligned} \frac{\partial ^{2}G_{2}}{\partial x^{2}}+\frac{\partial ^{2}G_{2}}{\partial y^{2}}+\frac{\partial ^{2}G_{2}}{\partial z^{2}}=\frac{1}{k}\frac{\partial G_{2}}{\partial \tau }. \end{aligned}$$
(164)

Applying the Fourier transform on the variables \(x\) and \(y\), taking into account the Fourier transform property for derivatives [27, Eq. 33.20], we obtain

$$\begin{aligned} -\omega _{x}^{2}\tilde{G}_{2}-\omega _{y}^{2}\tilde{G}_{2}+\frac{\partial ^{2}\tilde{G}_{2}}{\partial z^{2}}=\frac{1}{k}\frac{\partial \tilde{G}_{2}}{\partial \tau }. \end{aligned}$$
(165)

Performing now the Laplace transform on the variable \(\tau \), applying the Laplace transform for derivatives [28, Eqn. 17.12.2], Eq. (165) becomes

$$\begin{aligned} k\left( -\omega _{x}^{2}\bar{G}_{2}-\omega _{y}^{2}\bar{G}_{2}+\frac{d^{2} \bar{G}_{2}}{dz^{2}}\right) =s\bar{G}_{2}-\left. \tilde{G}_{2}\right| _{\tau =0}. \end{aligned}$$
(166)

Notice that for \(\tau =0\) (i.e., \(t=t^{\prime }\)), due to (150), we have

$$\begin{aligned} \left. \tilde{G}_{2}\right| _{\tau =0}=0, \end{aligned}$$

so (166) is rewritten as

$$\begin{aligned} \frac{d^{2}\bar{G}_{2}}{dz^{2}}=\left( \omega _{x}^{2}+\omega _{y}^{2}+\frac{s}{k}\right) \bar{G}_{2}, \end{aligned}$$

and the solution of this is

$$\begin{aligned} \bar{G}_{2}&= A\exp \left( -z\sqrt{\omega _{x}^{2}+\omega _{y}^{2}+s/k} \right) +B\exp \left( z\sqrt{\omega _{x}^{2}+\omega _{y}^{2}+s/k}\right) . \end{aligned}$$
(167)

To avoid a nondivergent solution for \(\tilde{G}_{2}\) at \(z\rightarrow \infty \) (recall that \(z>0\)), we must take \(B=0\) in (167), so

$$\begin{aligned} \bar{G}_{2}=A\exp \left( -z\sqrt{\omega _{x}^{2}+\omega _{y}^{2}+s/k}\right) , \end{aligned}$$
(168)

and then

$$\begin{aligned} \left. \bar{G}_{2}\right| _{z=0}=A \end{aligned}$$
(169)

and

$$\begin{aligned} \frac{\partial \bar{G}_{2}}{\partial z}\bigg \vert _{z=0}=-A\sqrt{\omega _{x}^{2}+\omega _{y}^{2}+s/k}. \end{aligned}$$
(170)

Substituting (169) and (170) into (163) and solving, we arrive at

$$\begin{aligned} A=-\frac{h_{0}Q}{4\pi ^{2}k}\frac{\exp \left( -z^{\prime }\sqrt{\omega _{x}^{2}+\omega _{y}^{2}+s/k}\right) \exp \left( {\text {i}}\left[ \omega _{x}x^{\prime }+\omega _{y}y^{\prime }\right] \right) }{\sqrt{\omega _{x}^{2}+\omega _{y}^{2}+s/k}\left( \sqrt{\omega _{x}^{2}+\omega _{y}^{2}+s/k }+h_{0}\right) }. \end{aligned}$$
(171)

Substituting now (171) into (168), we obtain

$$\begin{aligned} \bar{G}_{2}=-\frac{h_{0}Q}{4\pi ^{2}}\frac{\exp \left( -\frac{z+z^{\prime }}{\sqrt{k}}\sqrt{k\left( \omega _{x}^{2}+\omega _{y}^{2}\right) +s}\right) \exp \Big ( {\text {i}}\left[ \omega _{x}x^{\prime }+\omega _{y}y^{\prime }\right] \Big ) }{\sqrt{k\left( \omega _{x}^{2}+\omega _{y}^{2}\right) +s}\left( \sqrt{k\left( \omega _{x}^{2}+\omega _{y}^{2}\right) +s}+h_{0}\sqrt{k}\right) }. \end{aligned}$$
(172)

To obtain \(G_{2}\), we must inverse transform \(\bar{G}_{2}\), first on variable \(s\) to variable \(\tau \), then on variable \(\omega _{y}\) to variable \(y\), and last on variable \(\omega _{x}\) to variable \(x\). From the Laplace transform properties [14, Eqns. 29.2.12; 29.3.90], we may inverse transform (172), obtaining

$$\begin{aligned} \tilde{G}_{2}&= -\frac{h_{0}Q}{4\pi ^{2}}\exp \left( {\text {i}}\left[ \omega _{x}x^{\prime }+\omega _{y}y^{\prime }\right] -k\tau \left[ \omega _{x}^{2}+\omega _{y}^{2}\right] \right) \exp \left( h_{0}\left[ z+z^{\prime }\right] +h_{0}^{2}k\tau \right) \ \mathrm {erfc}\left( h_{0}\sqrt{k\tau }+\frac{z+z^{\prime }}{2\sqrt{k\tau }}\right) . \end{aligned}$$
(173)

Now, from the Fourier transform properties [27, Eqns. 33.22; 33.41] we have

$$\begin{aligned} \mathcal {F}_{y}^{-1}\left[ \exp \left( {\text {i}}\omega _{y}y^{\prime }-k\tau \omega _{y}^{2}\right) \right] =\sqrt{\frac{\pi }{k\tau }}\exp \left( -\frac{\left( y-y^{\prime }\right) ^{2}}{4k\tau }\right) . \end{aligned}$$
(174)

Thus, performing the Fourier inverse transform on variable \(\omega _y\) to variable \(y\) in (173) and applying (174), we have

$$\begin{aligned} \hat{G}_{2}&= -\frac{h_{0}Q}{4\pi \sqrt{\pi k\tau }}\exp \left( -\frac{\left( y-y^{\prime }\right) ^{2}}{4k\tau }\right) \exp \left( {\text {i}}\omega _{x}x^{\prime }-k\tau \omega _{x}^{2}\right) \exp \left( h_{0}\left[ z+z^{\prime }\right] +h_{0}^{2}k\tau \right) \ \mathrm {erfc}\left( h_{0}\sqrt{k\tau }+\frac{z+z^{\prime }}{2\sqrt{k\tau }}\right) . \nonumber \\ \end{aligned}$$
(175)

Similarly, but performing now the Fourier inverse transform on variable \(\omega _x\) to variable \(x\) in (175), we arrive at

$$\begin{aligned} G_{2}&= -\frac{h_{0}Q}{4\pi k\left( t-t^{\prime }\right) }\exp \left( - \frac{\left( x-x^{\prime }\right) ^{2}+\left( y-y^{\prime }\right) ^{2}}{4k\left( t-t^{\prime }\right) }\right) \nonumber \\&\times \exp \left( h_{0}\left[ z+z^{\prime }\right] +h_{0}^{2}k\left[ t-t^{\prime }\right] \right) \ \mathrm {erfc}\left( h_{0}\sqrt{k\left( t-t^{\prime }\right) }+\frac{z+z^{\prime }}{2\sqrt{k\left( t-t^{\prime }\right) }}\right) , \end{aligned}$$
(176)

where we have taken (155) into account. Finally, substituting the results given in (153) and (176) into (147), we get

$$\begin{aligned} G&= G_{1}+G_{2} = \frac{Q}{4\pi k\left( t-t^{\prime }\right) }\exp \left( -\frac{\left( x-x^{\prime }\right) ^{2}+\left( y-y^{\prime }\right) ^{2}}{4k\left( t-t^{\prime }\right) }\right) \nonumber \\&\times \left\{ \frac{1}{2\sqrt{\pi k\left( t-t^{\prime }\right) }}\left[ \exp \left( -\frac{\left( z-z^{\prime }\right) ^{2}}{4k\left( t-t^{\prime }\right) }\right) +\exp \left( -\frac{\left( z+z^{\prime }\right) ^{2}}{ 4k\left( t-t^{\prime }\right) }\right) \right] \right. \nonumber \\&-\left. h_{0}\ {\text {e}}^{h_{0}\left( z+z^{\prime }\right) +h_{0}^{2}k\left( t-t^{\prime }\right) }\ \mathrm {erfc}\left( h_{0}\sqrt{ k\left( t-t^{\prime }\right) }+\frac{z+z^{\prime }}{2\sqrt{k\left( t-t^{\prime }\right) }}\right) \right\} . \end{aligned}$$
(177)

1.2 A.2 Derivation of (7)

In the literature [12, Eq. 4–11], we find the following expression for the transient temperature distribution due to a continously acting band heat source on the surface of a moving body (Fig. 1) considering a constant heat band source strength \(q\), a constant heat transfer coefficient \(h\) on the surface, and a zero initial temperature, \(T_{\text {r}}=0\),

$$\begin{aligned} T_{\text {wet}}\left( t,x,z\right) =T_{\text {dry}}\left( t,x,z\right) +\Delta T_{\text {wet}}\left( t,x,z\right) , \end{aligned}$$

where

$$\begin{aligned} T_{\text {dry}}\left( t,x,z\right)&= \frac{q}{2\pi k\rho c}\int _{-\ell }^{\ell }\int _{0}^{t}\frac{1}{t-t^{\prime }}\exp \left( -\frac{z^{2}+\left\{ x-x^{\prime }+v_{f}\left( t-t^{\prime }\right) \right\} ^{2}}{4k\left( t-t^{\prime }\right) }\right) \, {\text {d}}t^{\prime }\,{\text {d}}x^{\prime } \end{aligned}$$
(178)

and

$$\begin{aligned} \Delta T_{\text {wet}}\left( t,x,z\right)&= -\frac{qh_{0}{\text {e}}^{h_{0}z}}{2\rho c\sqrt{\pi k}}\int _{-\ell }^{\ell }\int _{0}^{t} \frac{1}{\sqrt{t-t^{\prime }}}\mathrm {erfc}\left( \frac{z}{2\sqrt{ k\left( t-t^{\prime }\right) }}+h_{0}\sqrt{k\left( t-t^{\prime }\right) } \right) \nonumber \\&\times \exp \left( kh_{0}^{2}\left( t-t^{\prime }\right) -\frac{\left\{ x-x^{\prime }+v_{f}\left( t-t^{\prime }\right) \right\} ^{2}}{4k\left( t-t^{\prime }\right) }\right) \, {\text {d}}t^{\prime }\,{\text {d}}x^{\prime }. \end{aligned}$$
(179)

Performing a change of variables \(u=t-t^{\prime }\) in (178) and (179) and exchanging the integration order, we get

$$\begin{aligned} T_{\text {dry}}\left( t,x,z\right)&= \frac{q}{2\pi k\rho c} \int _{0}^{t}\int _{-\ell }^{\ell }\frac{1}{u}\exp \left( -\frac{z^{2}}{4ku}\right) \exp \left( -\frac{\left\{ x-x^{\prime }+v_{f}u\right\} ^{2}}{4ku} \right) \, {\text {d}}x^{\prime }{\text {d}}u \end{aligned}$$
(180)

and

$$\begin{aligned} \Delta T_{\text {wet}}\left( t,x,z\right)&= -\frac{qh_{0}{\text {e}}^{h_{0}z}}{2\rho c \sqrt{\pi k}}\int _{0}^{t}\int _{-\ell }^{\ell }\frac{{\text {e}}^{kh_{0}^{2}u}}{\sqrt{u} }\mathrm {erfc}\left( \frac{z}{2\sqrt{ku}}+h_{0}\sqrt{ku}\right) \exp \left( -\frac{\left\{ x-x^{\prime }+v_{f}u\right\} ^{2}}{4ku} \right) \, {\text {d}}x^{\prime }{\text {d}}u. \end{aligned}$$
(181)

Performing now a change of variables \(\xi =\left\{ x-x^{\prime }+v_{f}u\right\} /( 2\sqrt{ku}) \) in (180) and (181), we arrive at

$$\begin{aligned} \int _{-\ell }^{\ell }\exp \left( -\frac{\left\{ x-x^{\prime }+v_{f}u\right\} ^{2}}{4ku}\right) {\text {d}}x^{\prime }&= 2\sqrt{ku}\int _{\left( x-\ell +v_{f}u\right) /( 2\sqrt{ku}) }^{\left( x+\ell +v_{f}u\right) /( 2\sqrt{ku}) }\exp \left( -\xi ^{2}\right) {\text {d}}\xi \nonumber \\&= \sqrt{\pi ku}\left[ \mathrm {erf}\!\left( \frac{x+\ell +v_{f}u}{2\sqrt{ku}} \right) -\mathrm {erf}\!\left( \frac{x-\ell +v_{f}u}{2\sqrt{ku}}\right) \right] . \end{aligned}$$
(182)

Therefore, substituting (182) into (180) and (181), we finally obtain

$$\begin{aligned} T_{\text {dry}}\left( t,x,z\right)&= \frac{q}{2\rho c\sqrt{\pi k}} \int _{0}^{t}\exp \left( -\frac{z^{2}}{4ku}\right) \left[ \mathrm {erf}\!\left( \frac{x+\ell +v_{f}u}{2\sqrt{ku}}\right) - \mathrm {erf}\!\left( \frac{x-\ell +v_{f}u}{2\sqrt{ku}}\right) \right] \frac{\mathrm{d}u }{\sqrt{u}} \end{aligned}$$

and

$$\begin{aligned} \Delta T_{\text {wet}}\left( t,x,z\right)&= -\frac{qh_{0}{\text {e}}^{h_{0}z}}{2\rho c} \int _{0}^{t}{\text {e}}^{kh_{0}^{2}u}\mathrm {erfc}\left( \frac{z}{2\sqrt{ku}}+h_{0} \sqrt{ku}\right) \left[ \mathrm {erf}\!\left( \frac{x+\ell +v_{f}u}{2\sqrt{ku}}\right) - \mathrm {erf}\!\left( \frac{x-\ell +v_{f}u}{2\sqrt{ku}}\right) \right] {\text {d}}u, \end{aligned}$$

which correspond to (6) and (7), respectively.

1.3 A.3 Derivation of (9)

Indeed, straightforwardly from (3) and (7) we have

$$\begin{aligned} \underset{t\rightarrow \infty }{\lim }\Delta T_{\text {wet}}\left( x,z,t\right) =\Delta T_{\text {wet}}\left( x,z\right) . \end{aligned}$$

Thus, we must prove

$$\begin{aligned} \underset{t\rightarrow \infty }{\lim }T_{\text {dry}}\left( x,z,t\right) =T_{ \text {dry}}\left( x,z\right) . \end{aligned}$$

To do so, let us rewrite (7) as

$$\begin{aligned} \mathrm {erf}\!\left( \frac{x+\ell +v_{f}u}{2\sqrt{ku}}\right) -\mathrm {erf}\! \left( \frac{x-\ell +v_{f}u}{2\sqrt{ku}}\right)&= \frac{2}{\sqrt{\pi }}\int _{\left( x-\ell +v_{f}u\right) /( 2\sqrt{ku} ) }^{\left( x+\ell +v_{f}u\right) /( 2\sqrt{ku}) }\exp \left( -s^{2}\right) {\text {d}}s \nonumber \\&= \frac{1}{\sqrt{\pi ku}}\int _{-\ell }^{\ell }\exp \left( -\left[ \frac{ x-x^{\prime }+v_{f}u}{2\sqrt{ku}}\right] ^{2}\right) \, {\text {d}}x^{\prime }. \end{aligned}$$
(183)

Thus, substituting (183) into (7), exchanging the integration order, and taking the limit \(t\rightarrow \infty \), we arrive at

$$\begin{aligned} \underset{t\rightarrow \infty }{\lim }T_{\text {dry}}\left( x,z,t\right)&= \frac{q}{2\rho c\sqrt{\pi k}}\int _{-\ell }^{\ell }\int _{0}^{\infty }\exp \left( -\frac{v_{f}\left( x-x^{\prime }\right) }{2k}\right) \frac{1}{u}\exp \left( -\frac{z^{2}+\left( x-x^{\prime }\right) ^{2} }{4ku}-\frac{v_{f}^{2}}{4k}u\right) \, {\text {d}}u\,{\text {d}}x^{\prime }. \end{aligned}$$
(184)

Using the integral representation [22, Eqn. 5.10.25],

$$\begin{aligned} K_{\nu }\left( z\right)&= \frac{1}{2}\left( \frac{z}{2}\right) ^{\nu }\int _{0}^{\infty }\exp \left( -t-\frac{z^{2}}{4t}\right) t^{-\nu -1}{\text {d}}t, \\ \left| \mathrm {arg}\,z\right|&< \frac{\pi }{4}, \end{aligned}$$

we may rewrite (184) as

$$\begin{aligned} \int _{0}^{\infty }\exp \left( -\frac{z^{2}+\left( x-x^{\prime }\right) ^{2}}{4ku}-\frac{v_{f}^{2}}{4k}u\right) \frac{{\text {d}}u}{u}=2K_{0}\left( \frac{\left| v_{f}\right| }{2k}\sqrt{\left( x-x^{\prime }\right) ^{2}+z^{2}}\right) . \end{aligned}$$
(185)

Inserting now (185) into (184), we finally get (1), as we wished to prove.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Santander, J.L., Isidro, J.M. & Martín, G. An analysis of the transient regime temperature field in wet grinding. J Eng Math 90, 141–171 (2015). https://doi.org/10.1007/s10665-014-9713-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9713-6

Keywords

Navigation