Skip to main content
Log in

Depth of thermal penetration in straight grinding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Unlike the usual numerical FEM approach to determine the thermally affected layer during the grinding process, we propose a simple analytical approach to estimate the depth of thermal penetration. For this purpose, the one-dimensional definition of depth of thermal penetration is applied to the two-dimensional heat transfer models of straight grinding. A method for computing the depth of thermal penetration in these two-dimensional models is derived and compared to the one-dimensional approximation. For dry grinding, it turns out that the one-dimensional approximation is quite accurate when we consider a moderate percentage in the temperature fall beneath the surface, regardless the type of heat flux profile entering into the workpiece (i.e., constant, linear, triangular, or parabolic). In wet grinding, the latter is true if we consider a constant heat flux profile and a high Peclet number, i.e., Pe > 5. Finally, the one- and two-dimensional approaches calculating analytically the depth of thermal penetration have been compared to the temperature field numerically evaluated by a three-dimensional FEM simulation given in the literature, obtaining a quite good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives. Industrial Press Inc, New York

    Google Scholar 

  2. Jaeger JC (1942) Moving sources of heat and the temperature at sliding contracts. P Roy Soc NS Wales 76:204–224

    Google Scholar 

  3. Li J, Li JCM (2005) Temperature distribution in workpiece during scratching and grinding. Mat Sci Eng A-Struct 409(1):108–119. https://doi.org/j.msea.2005.07.057

    Article  Google Scholar 

  4. Zarudi I, Zhang LC (2002) A revisit to some wheel–workpiece interaction problems in surface grinding. Int J Mach Tool Manu 42:905–913. https://doi.org/10.1016/S0890-6955(02)00024-X

    Article  Google Scholar 

  5. Yan XT (2002) On the penetration depth in fourier heat conduction. In: 8th AIAA/ASME Joint thermophysics and heat transfer conference. Saint Louis

  6. Takazawa K (1966) Effects of grinding variables on surface structure of hardened steel. Bull Japan Soc Prec Eng 2(1):14– 21

    Google Scholar 

  7. Brinksmeier E, Brockhoff T (1996) Utilisation of grinding heat as a new heat treatment process. CIRP Ann Manuf Tech 45(1):283–286. https://doi.org/10.1016/S0007-8506(07)63064-9

    Article  Google Scholar 

  8. Salonitis K, Chryssolouris G (2007) Cooling in grind-hardening operations. Int J Adv Manuf Technol 33 (3-4):285–297. https://doi.org/10.1007/s00170-006-0467-9

    Article  Google Scholar 

  9. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  10. Skuratov D, Ratis Y, Selezneva I, Pérez J, Ferná ndez de Córdoba P, Urchueguía J (2007) Mathematical modelling and analytical solution for workpiece temperature in grinding. Appl Math Model 31:1039–1047. https://doi.org/10.1016/j.apm.2006.03.023

    Article  MATH  Google Scholar 

  11. Lavine AS, Malkin S, Jen TC (1989) Thermal aspects of grinding with CBN wheels. CIRP Annals-Manu Tech 38:557–560. https://doi.org/10.1016/S0007-8506(07)62768-1

    Article  Google Scholar 

  12. Guo C, Malkin S (1995) Analysis of energy partitions in grinding. J Eng Ind-T ASME 117:55–61. https://doi.org/10.1115/1.2803278

    Article  Google Scholar 

  13. Sauer WJ (1971) Thermal aspects of grinding. Dissertation, Carnegie-Mellon University

  14. Guo C, Wu Y, Varghese V, Malkin S (1999) Temperatures and energy partition for grinding with vitrified CBN wheels. CIRP Annals-Manu Tech 42:247–250. https://doi.org/10.1016/S0007-8506(07)63176-X

    Article  Google Scholar 

  15. Mahdi M, Zhang L (1998) Applied mechanics in grinding—VI. Residual stresses and surface hardening by coupled thermo-plasticity and phase transformation. Int J Mach Tool Manu 38:1289–1304. https://doi.org/10.1016/S0890-6955(97)00134-X

    Article  Google Scholar 

  16. Rowe WB, Black SC, Mills B, Qi HC, Morgan MN (1995) Experimental investigation of heat transfer in grinding. CIRP Annals-Manu Tech. https://doi.org/10.1016/S0007-8506(07)62336-1

  17. Knothe K, Liebelt S (1995) Determination of temperatures for sliding contact with applications for wheel-rail systems. Wear 189:91–99. https://doi.org/10.1016/0043-1648(95)06666-7

    Article  Google Scholar 

  18. Beck JV, Cole KD, Haji-Sheikh A, Litkouhi B (2010) Heat conduction using Green’s functions, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  19. González-Santander JL, Martín G (2015) A theorem for finding maximum temperature in wet grinding. Math Probl Eng. https://doi.org/10.1155/2015/150493

  20. González-Santander JL, Valdés Placeres JM, Isidro JM (2011) Exact solution for the time-dependent temperature field in dry grinding: application to segmental wheels. Math Probl Eng. https://doi.org/10.1155/2011/927876

  21. González-Santander JL (2016) Maximum temperature and relaxation time in wet surface grinding for a general heat flux profile. Math Probl Eng. https://doi.org/10.1155/2016/5387612

  22. González-Santander JL (2014) Calculation of an integral arising in dry flat grinding for a general heat flux profile. Application to maximum temperature evaluation. J Eng Math 88:137–160. https://doi.org/10.1007/s10665-013-9684-z

    Article  MathSciNet  MATH  Google Scholar 

  23. DesRuisseaux NR, Zerkle RD (1970) Temperature in semi-infinite and cylindrical bodies subjected to moving heat sources and surface cooling. J Heat Trans-T ASME 92(3):456–464. https://doi.org/10.1115/1.3449689

    Article  Google Scholar 

  24. Takahasi H, Mori M (1973) Double exponential formulas for numerical integration. Pub Res I Math Sci 9:721–741. https://doi.org/10.2977/prims/1195192451

    Article  MathSciNet  MATH  Google Scholar 

  25. González-Santander JL, Martín González G (2015) Closed form expression for the surface temperature in wet grinding. Application to maximum temperature evaluation. J Eng Math 90(1):173–193. https://doi.org/10.1007/s10665-014-9716-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Oldham KB, Myland J, Spanier J (2010) An atlas of functions: with equator the atlas function calculator. Springer Science & Business Media, New York

    MATH  Google Scholar 

  27. Olver FWJ, Lozier DW, Boisvert RF, Clark CW (2010) NIST handbook of mathematical functions. Cambridge University Press, New York

    MATH  Google Scholar 

  28. Murav’ev VI, Yakimov AV, Chernysev AV (2003) Effect of deformation, welding, and electrocontact heating on the properties of titanium alloy VT20 in pressed and welded structures. Met Sci Heat Treat 45:419–422. https://doi.org/10.1023/B:MSAT.0000019194.64623.48

    Article  Google Scholar 

  29. Lavine AS (1988) A simple model for convective cooling during the grinding process. J Eng Ind-T ASME 110:1–6. https://doi.org/10.1115/1.3187837

    Article  Google Scholar 

  30. Wang X, Yu T, Sun X, Shi Y, Wang W (2016) Study of 3D grinding temperature field based on finite difference method: considering machining parameters and energy partition. Int J Adv Manuf Tech 84 (5-8):915–927. https://doi.org/10.1007/s00170-015-7757-z

    Google Scholar 

  31. Gradsthteyn IS, Ryzhik IM (2007) Table of integrals series and products, 7th edn. Academic Press Inc, New York

    Google Scholar 

  32. Prudnikov AP, Brychkov YA, Marichev OI (1986) Integrals and series vol 2: special functions. Gordon and Breach, New York

    MATH  Google Scholar 

Download references

Funding

The authors wish to thank the financial support received from the Universidad Cat ólica de Valencia under grant PRUCV/2015/612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. González-Santander.

Appendix. One-dimensional solution for wet grinding

Appendix. One-dimensional solution for wet grinding

We have to solve the following boundary value problem:

$$\begin{array}{@{}rcl@{}} \frac{\partial T\left( t,y\right) }{\partial t} &=&k\frac{\partial^{2}T\left( t,y\right) }{\partial y^{2}}, \end{array} $$
(87)
$$\begin{array}{@{}rcl@{}} T\left( 0,y\right) &=&T_{\infty },\qquad y>0, \end{array} $$
(88)
$$\begin{array}{@{}rcl@{}} \frac{\partial T}{\partial x}\left( t,0\right) &=&-q_{0}+h_{0}\left[ T\left( t,0\right) -T_{\infty }\right] ,\quad t>0. \end{array} $$
(89)

Performing the change of variables,

$$ \vartheta \left( t,y\right) =T\left( t,y\right) -T_{\infty }+q_{0}y, $$
(90)

the problems stated in Eqs. 8789 become

$$\begin{array}{@{}rcl@{}} \frac{\partial \vartheta }{\partial t} &=&k\frac{\partial^{2}\vartheta }{ \partial y^{2}}, \end{array} $$
(91)
$$\begin{array}{@{}rcl@{}} \frac{\partial \vartheta }{\partial y}\left( t,0\right) &=&h_{0}\vartheta \left( t,0\right) , \end{array} $$
(92)
$$\begin{array}{@{}rcl@{}} \vartheta \left( 0,y\right) &=&q_{0}y. \end{array} $$
(93)

In [9, Eqn. 14.2(7)], the solution to the problem

$$\begin{array}{@{}rcl@{}} \frac{\partial v}{\partial t} &=&k\frac{\partial^{2}v}{\partial x^{2}},\\ \frac{\partial v}{\partial y}\left( t,0\right) -h\,v\left( t,0\right) &=&h\,\phi \left( t\right) ,\\ v\left( 0,x\right) &=&f\left( x\right) , \end{array} $$

is given by

$$\begin{array}{@{}rcl@{}} &&v\left( t,x\right)\\ &\,=\,&{\int}_{0}^{\infty }f\left( \xi \right) \left\{ \frac{e^{-\left( x-\xi \right)^{2}/4kt}+e^{-\left( x+\xi \right)^{2}/\left( 4kt\right) }}{2\sqrt{ \pi kt}}\right. \\ &&\,-\,\left. h\,e^{kth^{2}+h\left( x+\xi \right) }\text{erfc}\left( \frac{ x+\xi }{2\sqrt{kt}}+h\sqrt{kt}\right) \right\} d\xi \\ &&\!+kh{{\int}_{0}^{t}}\phi \left( \tau \right) \left\{ \frac{e^{-x^{2}/4k\left( t-\tau \right) }}{\sqrt{\pi k\left( t-\tau \right) }}\right. \\ &&\quad \,-\,\left. h\,e^{kh^{2}\left( t-\tau \right) +hx}\text{erfc}\left( \frac{x}{2\sqrt{k\left( t-\tau \right) }}+h\sqrt{k\left( t-\tau \right) } \right) \right\} d\tau . \end{array} $$
(94)

Therefore, applying the solution given in Eq. 94 to the boundary value problem stated in Eqs. 9193, taking ϕ(t) = 0 and f(y) = q0y, we have

$$\begin{array}{@{}rcl@{}} &&\vartheta \left( t,y\right) \end{array} $$
(95)
$$\begin{array}{@{}rcl@{}} &=&q_{0}\left\{ \frac{1}{2\sqrt{\pi kt}}{\int}_{0}^{\infty }\left( e^{-\left( y-\xi \right)^{2}/4kt}+e^{-\left( y+\xi \right)^{2}/4kt}\right) \xi d\xi \right. \end{array} $$
(96)
$$\begin{array}{@{}rcl@{}} &&-\left. h_{0}e^{kt{h_{0}^{2}}}{\int}_{0}^{\infty }e^{h_{0}\left( y+\xi \right) }\,\text{erfc}\left( \frac{y+\xi }{2\sqrt{kt}}+h_{0}\sqrt{kt}\right) \xi d\xi \right\} . \end{array} $$
(97)

The integral given in Eq. 96, denoted by I1 hereafter can be calculated by using the following result (see [31, Eqn. 3.462.5]):

$$\begin{array}{@{}rcl@{}} &&{\int}_{0}^{\infty }x\,e^{-\mu x^{2}-2\nu x}dx=\frac{1}{2\mu }-\frac{\nu }{ 2\mu }e^{\nu^{2}/\mu }\,\text{erfc}\left( \frac{\nu }{\sqrt{\mu }}\right) , \\ &&\left\vert \arg\,\nu \right\vert <\frac{\pi }{2},\,\mathrm{Re\,} \mu >0, \end{array} $$

thereby,

$$\begin{array}{@{}rcl@{}} I_{1} &=&\frac{1}{2\sqrt{\pi kt}}{\int}_{0}^{\infty }\left( e^{-\left( y-\xi \right)^{2}/4kt}+e^{-\left( y+\xi \right)^{2}/4kt}\right) \xi d\xi\\ &=&2\sqrt{\frac{kt}{\pi }}e^{-y^{2}/4kt}+y\,\text{erfc}\left( \frac{y}{2 \sqrt{kt}}\right) . \end{array} $$
(98)

The infinite integral given in Eq. 97, denoted by I2, can be expressed in terms of the indefinite integral I2(ξ) as

$$ I_{2}=\lim_{\xi \rightarrow \infty }I_{2}\left( \xi \right) -I_{2}\left( 0\right) $$
(99)

In order to calculate I2(ξ), perform the substitution \( u=\frac {y+\xi }{2\sqrt {kt}}+h_{0}\sqrt {kt}\) and set \(\alpha = 2h_{0}\sqrt {kt}\) , to arrive at

$$\begin{array}{@{}rcl@{}} I_{2}\left( \xi \right) &=&-h_{0}e^{kt{h_{0}^{2}}}\int e^{h_{0}\left( y+\xi \right) }\,\text{erfc}\left( \frac{y+\xi }{2\sqrt{kt}}+h_{0}\sqrt{kt} \right) \xi d\xi\\ &=&-\alpha \left\{ \frac{\alpha }{h_{0}}e^{-\alpha^{2}/4}\int u\,e^{\alpha u}\,\text{erfc}\left( u\right) du\right.\\ &&\quad -\left. \left( \alpha \sqrt{kt}+y\right) \int e^{\alpha u}\,\mathrm{ erfc}\left( u\right) du\right\} . \end{array} $$
(100)

Both integrals given in Eq. 100 can be calculated with the following results (see [32, Eqns. 1.5.2(3)-(4)]):

$$\int \!e^{by}\,\mathrm{\!erfc}\left( ay\right) dy\,=\,\frac{e^{by}}{b}\text{erfc} \left( ay\right) +\frac{e^{b^{2}/4a^{2}}}{b}\,\text{erfc}\left( \!ay\!-\frac{b }{2a}\right) , $$

and

$$\begin{array}{@{}rcl@{}} &&\int y\,e^{by}\,\text{erfc}\left( ay\right) dy \\ &=&\frac{e^{by}}{b}\left( y-\frac{1}{b}\right) \text{erfc}\left( ay\right) \\ &&+\frac{e^{b^{2}/4a^{2}}}{b}\left[ \left( \frac{1}{2a^{2}}-\frac{1}{b} \right) \text{erfc}\left( ay-\frac{b}{2a}\right) -\frac{e^{-\left( 2ay-b/a\right)^{2}/4}}{a\sqrt{\pi }}\right] . \end{array} $$

Therefore, Eq. 100 is calculated as

$$\begin{array}{@{}rcl@{}} I_{2}\left( \xi \right) &=&2\sqrt{\frac{kt}{\pi }}e^{-\left( y+\xi \right)^{2}/4kt}+\frac{1+h_{0}y}{h_{0}}\,\text{erf}\left( \frac{y+\xi }{2\sqrt{kt}}\right)\\ &&+\frac{1-h_{0}y}{h_{0}}e^{{h_{0}^{2}}kt+h_{0}\left( y+\xi \right) }\,\mathrm{ erfc}\left( \frac{y+\xi }{2\sqrt{kt}}+h_{0}\sqrt{kt}\right) . \end{array} $$
(101)

Notice that since y, t, k, h0 > 0, we have

$$\begin{array}{@{}rcl@{}} \lim\limits_{\xi \rightarrow \infty }I_{2}\left( \xi \right) &=&\frac{1+h_{0}y}{ h_{0}}-\lim\limits_{\xi \rightarrow \infty }\xi \,e^{h_{0}\xi }\,\text{erfc} \left( \frac{\xi }{2\sqrt{kt}}\right) \\ &=&\frac{1+h_{0}y}{h_{0}}, \end{array} $$
(102)

where we have used the asymptotic expansion (see [27, Eqn. 7.12.1])

$$\text{erfc}\left( z\right) \sim \frac{e^{-z^{2}}}{\sqrt{\pi }z} \sum\limits_{m = 0}^{\infty }\left( -1\right)^{m}\frac{\left( 2m-1\right) !!}{\left( 2z^{2}\right)^{m}},\quad z\rightarrow \infty . $$

Therefore, taking into account (101) and (102) in Eq. 99, we have

$$\begin{array}{@{}rcl@{}} I_{2} &=&\frac{1+h_{0}y}{h_{0}}\,\text{erfc}\left( \frac{y}{2\sqrt{kt}} \right) -2\sqrt{\frac{kt}{\pi }}e^{-y^{2}/4kt}\\ &&-\frac{e^{{h_{0}^{2}}kt+h_{0}y}}{h_{0}}\,\text{erfc}\left( \frac{y}{2\sqrt{ kt}}+h_{0}\sqrt{kt}\right) . \end{array} $$
(103)

Substituting back in Eqs. 95 and 90 the results obtained in Eqs. 98 and 103, we finally arrive at

$$\begin{array}{@{}rcl@{}} &&T\left( t,y\right) -T_{\infty } \\ &=&\frac{q_{0}}{h_{0}}\left\{ \,\text{erfc}\left( \frac{y}{2\sqrt{kt}} \right) -e^{{h_{0}^{2}}kt+h_{0}y}\,\text{erfc}\left( \frac{y}{2\sqrt{kt}} +h_{0}\sqrt{kt}\right) \right\} . \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Santander, J.L., Espinós-Morató, H. Depth of thermal penetration in straight grinding. Int J Adv Manuf Technol 96, 3175–3190 (2018). https://doi.org/10.1007/s00170-018-1766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1766-7

Keywords

Navigation