Skip to main content
Log in

Impact of Hypocaloric Hyperproteic Diet on Gut Microbiota in Overweight or Obese Patients with Nonalcoholic Fatty Liver Disease: A Pilot Study

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

NAFLD is likely to become the most common cause of chronic liver disease. The first-line treatment includes weight loss.

Aims

To analyze the impact of a hypocaloric hyperproteic diet (HHD) on gut microbiota in NAFLD patients.

Methods

Fifteen overweight/obese patients with NAFLD were included. At baseline and after a 3-week HHD (Eurodiets®, ~1000 kcal/day, ~125 g protein/day), we measured gut microbiota composition and function by shotgun metagenomics; body weight; body composition by bioelectrical impedance analysis; liver and visceral fat by magnetic resonance imaging; plasma C-reactive protein (CRP); and liver tests. Results between both time points, expressed as median (first and third quartile), were compared by Wilcoxon signed-rank tests.

Results

At baseline, age was 50 (47–55) years and body mass index 34.6 (32.4, 36.7) kg/m2. HDD decreased body weight by 3.6 % (p < 0.001), percent liver fat by 65 % (p < 0.001), and CRP by 19 % (p = 0.014). HDD was associated with a decrease in Lachnospira (p = 0.019), an increase in Blautia (p = 0.026), Butyricicoccus (p = 0.024), and changes in several operational taxonomic units (OTUs) of Bacteroidales and Clostridiales. The reduced liver fat was negatively correlated with bacteria belonging to the Firmicutes and Bacteroidetes phyla (a Ruminococcaceae OTU, r = −0.83; Bacteroides, r = −0.73). The associated metabolic changes concerned mostly enzymes involved in amino acid and carbohydrate metabolism.

Conclusions

In this pilot study, HHD changes gut microbiota composition and function in overweight/obese NAFLD patients, in parallel with decreased body weight, liver fat, and systemic inflammation. Future studies should aim to confirm these bacterial changes and understand their mode of action.

Trail Registration

Under clinicaltrials.gov: NCT01477307.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Marchesini G, Bugianesi E, Forlani G, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology. 2003;37:917–923.

    Article  PubMed  Google Scholar 

  2. Ratziu V, Bellentani S, Cortez-Pinto H, Day C, Marchesini G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol. 2010;53:372–384.

    Article  PubMed  Google Scholar 

  3. Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10:686–690.

    Article  CAS  PubMed  Google Scholar 

  4. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142:1592–1609.

    Article  PubMed  Google Scholar 

  5. Musso G, Gambino R, Cassader M, Pagano G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology. 2010;52:79–104.

    Article  CAS  PubMed  Google Scholar 

  6. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484.

    Article  CAS  PubMed  Google Scholar 

  7. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–1023.

    Article  CAS  PubMed  Google Scholar 

  8. Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–588.

    Article  CAS  PubMed  Google Scholar 

  9. Xiao S, Fei N, Pang X, et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol. 2014;87:357–367.

    Article  CAS  PubMed  Google Scholar 

  10. Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58:120–127.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57:601–609.

    Article  CAS  PubMed  Google Scholar 

  12. Ruiz AG, Casafont F, Crespo J, et al. Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg. 2007;17:1374–1380.

    Article  PubMed  Google Scholar 

  13. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–2474.

    Article  CAS  PubMed  Google Scholar 

  14. Brunt EM, Tiniakos DG. Histopathology of nonalcoholic fatty liver disease. World J Gastroenterol (WJG). 2010;16:5286–5296.

    Article  Google Scholar 

  15. Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andersen T, Gluud C, Franzmann MB, Christoffersen P. Hepatic effects of dietary weight loss in morbidly obese subjects. J Hepatol. 1991;12:224–229.

    Article  CAS  PubMed  Google Scholar 

  17. Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004;23:1226–1243.

    Article  PubMed  Google Scholar 

  18. Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C. Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition. 2001;17:248–253.

    Article  CAS  PubMed  Google Scholar 

  19. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med. 2008;60:1122–1134.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Deng J, Fishbein MH, Rigsby CK, Zhang G, Schoeneman SE, Donaldson JS. Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease. Pediatr Radiol. 2014;44:1379–1387.

    Article  PubMed  Google Scholar 

  21. Brennan DD, Whelan PF, Robinson K, et al. Rapid automated measurement of body fat distribution from whole-body MRI. AJR Am J Roentgenol. 2005;185:418–423.

    Article  PubMed  Google Scholar 

  22. Shen W, Punyanitya M, Wang Z, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 1985;2004:2333–2338.

    Google Scholar 

  23. http://code.google.com/p/ea-utils. ea-utils: command-line tools for processing biological sequencing data. City.

  24. Meyer F, Paarmann D, D’Souza M, et al. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform. 2008;9:386.

    Article  CAS  Google Scholar 

  25. Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmieder R, Edwards R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE. 2011;6:e17288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461.

    Article  CAS  PubMed  Google Scholar 

  28. McDonald D, Price MN, Goodrich J, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–618.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Overbeek R, Olson R, Pusch GD, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:D206–D214.

    Article  CAS  PubMed  Google Scholar 

  31. Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38:e191.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ryan MC, Itsiopoulos C, Thodis T, et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol. 2013;59:138–143.

    Article  CAS  PubMed  Google Scholar 

  34. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57:289–300.

    Google Scholar 

  35. Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes. 2005;54:603–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harrison SA, Fecht W, Brunt EM, Neuschwander-Tetri BA. Orlistat for overweight subjects with nonalcoholic steatohepatitis: a randomized, prospective trial. Hepatology. 2009;49:80–86.

    Article  CAS  PubMed  Google Scholar 

  37. Larson-Meyer DE, Newcomer BR, Heilbronn LK, et al. Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function. Obesity. 2008;16:1355–1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kakiyama G, Pandak WM, Gillevet PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol. 2013;58:949–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bajaj JS, Hylemon PB, Ridlon JM, et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol. 2012;303:G675–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Raman M, Ahmed I, Gillevet PM, et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin gastroenterol Hepatol. 2013;11:e861–e863.

    Article  Google Scholar 

  42. Louis P, Scott KP, Duncan SH, Flint HJ. Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol. 2007;102:1197–1208.

    Article  CAS  PubMed  Google Scholar 

  43. Eeckhaut V, Ducatelle R, Sas B, Vermeire S, Van Immerseel F. Progress towards butyrate-producing pharmabiotics: Butyricicoccus pullicaecorum capsule and efficacy in TNBS models in comparison with therapeutics. Gut. 2014;63:367.

    Article  PubMed  Google Scholar 

  44. Brahe LK, Astrup A, Larsen LH. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev. 2013;14:950–959.

    Article  CAS  PubMed  Google Scholar 

  45. Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS ONE. 2013;8:e63388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11:577–591.

    Article  CAS  PubMed  Google Scholar 

  47. Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18:190–195.

    Article  PubMed  Google Scholar 

  48. Metges CC, Eberhard M, Petzke KJ. Synthesis and absorption of intestinal microbial lysine in humans and non-ruminant animals and impact on human estimated average requirement of dietary lysine. Curr Opin Clin Nutr Metab Care. 2006;9:37–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Anne Chalut-Carpentier and Mrs. Laurie Karsegard for taking care of the nutritional follow-up of the included patients, during the time of the intervention. This work was partly supported by Eurodiet, the FLAGS foundation, and the Research Fund of the Department of Internal Medicine of the University Hospital and the Faculty of Medicine of Geneva. This fund received an unrestricted grant from AstraZeneca Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Pataky.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Additional information

Zoltan Pataky and Laurence Genton have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pataky, Z., Genton, L., Spahr, L. et al. Impact of Hypocaloric Hyperproteic Diet on Gut Microbiota in Overweight or Obese Patients with Nonalcoholic Fatty Liver Disease: A Pilot Study. Dig Dis Sci 61, 2721–2731 (2016). https://doi.org/10.1007/s10620-016-4179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4179-1

Keywords

Navigation