Skip to main content
Log in

Grapefruit juice exerts anti-osteoporotic activities in a prednisolone-induced osteoporosis rat femoral fracture model, possibly via the RANKL/OPG axis

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

This study aimed to shed light on the protective and therapeutic anti-osteoporotic effects and mechanisms of action of grapefruit juice (GFJ) on prednisolone-induced osteoporosis a rat femoral fracture model. We found that treating rats with GFJ before and/or after prednisolone-induced osteoporosis resulted in increased bone density, total mineral content, and calcium content to counteract the osteoporotic effects of prednisolone. In parallel, the histological and ultrastructural results of the GFJ-treated groups correlated well with enhanced breaking strength of femurs subjected to a constant load. Furthermore, GFJ treatment before and after prednisolone-induced osteoporosis decreased plasma alkaline phosphatase and tartrate-resistant acid phosphatase activities and increased the level of insulin-like growth factor 1. Mechanistically, our immunohistochemistry study showed that GFJ ameliorated prednisolone-induced osteocalcin depletion, decreased receptor activator of nuclear factor kappa-B ligand (RANKL) expression, and increased osteoprotegerin (OPG) expression. GFJ showed a beneficial anti-osteoporotic effect against prednisolone-induced osteoporosis in rats, possibly via the RANKL/OPG axis, suggesting that GFJ might be a good candidate for developing anti-osteoporotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agnusdei D, Gentilella R (2005) GH and IGF-I as therapeutic agents for osteoporosis. J Endocrinol Investig 28:32–36

    CAS  Google Scholar 

  • Amin S, Riggs BL, Melton LJ, Achenbach SJ, Atkinson EJ, Khosla S (2007) High serum IGFBP-2 is predictive of increased bone turnover in aging men and women. J Bone Miner Res 22:799–807

    Article  CAS  PubMed  Google Scholar 

  • Bonucci E, Nanci A (2001) Alkaline phosphatase and tartrate-resistant acid phosphatase in osteoblasts of normal and pathologic bone. Italian Journal of Anatomy and Embryology Archivio italiano di anatomia ed embriologia 106:129–133

    CAS  PubMed  Google Scholar 

  • Cancalon PF (2016) Citrus juices health benefits. In: Beverage impacts on health and nutrition (pp 115–127). Humana Press, Cham

  • Cheng X, Filiaggi M, Roscoe SG (2004) Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy. Biomaterials 25:5395–5403

    Article  CAS  PubMed  Google Scholar 

  • Chiba H et al (2003) Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J Nutr 133:1892–1897

    Article  CAS  PubMed  Google Scholar 

  • Davies DR, Wyatt KM, Jardine JE, Robertson ID, Irwin PJ (2004) Vinblastine and prednisolone as adjunctive therapy for canine cutaneous mast cell tumors. J Am Anim Hosp Assoc 40:124–130

    Article  PubMed  Google Scholar 

  • Devogelaer J-P (2006) Glucocorticoid-induced osteoporosis: mechanisms and therapeutic approach. Rheum Dis Clin 32:733–757

    Article  Google Scholar 

  • Deyhim F, Mandadi K, Faraji B, Patil BS (2008) Grapefruit juice modulates bone quality in rats. J Med Food 11:99–104

    Article  CAS  PubMed  Google Scholar 

  • Elabd C et al (2008) Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells 26:2399–2407

    Article  CAS  Google Scholar 

  • Feldman SR (1992) The biology and clinical application of systemic glucocorticoids. Curr Probl Dermatol 4:211–235

    Article  Google Scholar 

  • Gennari C (1993) Differential effect of glucocorticoids on calcium absorption and bone mass. Rheumatology 32:11–14

    Article  Google Scholar 

  • Graham RC, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the peroximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14:291–302

    Article  CAS  Google Scholar 

  • Gudbjornsson B, Juliusson U, Gudjonsson F (2002) Prevalence of long term steroid treatment and the frequency of decision making to prevent steroid induced osteoporosis in daily clinical practice. Ann Rheum Dis 61:32–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haney EM, Warden S (2008) Skeletal effects of serotonin (5-hydroxytryptamine) transporter inhibition: evidence from clinical studies. J Musculoskelet Neuronal Interact 8:133–145

    CAS  PubMed  Google Scholar 

  • Hara K, Akiyama Y, Ohkawa I, Tajima T (1993) Effects of menatetrenone on prednisolone-induced bone loss in rats. Bone 14:813–818

    Article  CAS  PubMed  Google Scholar 

  • Hardcastle A, Aucott L, Fraser W, Reid D, Macdonald H (2011a) Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur J Clin Nutr 65:378

    Article  CAS  PubMed  Google Scholar 

  • Hardcastle AC, Aucott L, Reid DM, Macdonald HM (2011b) Associations between dietary flavonoid intakes and bone health in a Scottish population. J Bone Miner Res 26:941–947

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama Y et al (2012) Vertebral histomorphometry in a child with glucocorticoid-induced osteoporosis. Tohoku J Exp Med 227:263–267

    Article  PubMed  Google Scholar 

  • Hilton MJ et al (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrvačić B et al (2015) Relative potencies of three glucocorticoids to induce hypoplasia of the physis and concomitant biochemical alterations in the rat. Drug Chem Toxicol 38:272–277

    Article  CAS  PubMed  Google Scholar 

  • Hu J-P, Nishishita K, Sakai E, Yoshida H, Kato Y, Tsukuba T, Okamoto K (2008) Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-κB and Akt pathways. Eur J Pharmacol 580:70–79

    Article  CAS  PubMed  Google Scholar 

  • Humanson G (1961) Basic procedure—animal tissue technique Part I. WH Freeman and Company, San Francisco, pp 130–132

    Google Scholar 

  • Jagetia GC, Venkatesha V, Reddy TK (2003) Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow. Mutagenesis 18:337–343

    Article  CAS  PubMed  Google Scholar 

  • Jia M, Nie Y, Cao DP, Xue YY, Wang JS, Zhao L, Rahman K, Zhang QY, Qin LP (2012) Potential antiosteoporotic agents from plants: a comprehensive review. Evid Based Complement Altern Med. https://doi.org/10.1155/2012/364604

    Article  Google Scholar 

  • Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191

    Article  CAS  PubMed  Google Scholar 

  • Kasonde M et al (2014) Bone mineral density changes among HIV-uninfected young adults in a randomised trial of pre-exposure prophylaxis with tenofovir-emtricitabine or placebo in Botswana. PLoS ONE 9:e90111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiebzak GM, Smith R, Howe JC, Gundberg CM, Sacktor B (1988) Bone status of senescent female rats: chemical, morphometric, and biomechanical analyses. J Bone Miner Res 3:439–446

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-S, Paik I-Y, Rhie Y-J, Suh S-H (2010) Integrative physiology: defined novel metabolic roles of osteocalcin. J Korean Med Sci 25:985–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lean JM et al (2003) A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Investig 112:915–923

    Article  CAS  PubMed  Google Scholar 

  • Leontowicz M, Jesion I, Leontowicz H, Park YS, Namiesnik J, Jastrzebski Z, Katrich E, Tashma Z, Gorinstein S (2014) Bioactivity and bioavailability of minerals in rats loaded with cholesterol and kiwi fruit. Microchem J 114:148–154

    Article  CAS  Google Scholar 

  • Ma X, Lv J, Sun X, Ma J, Xing G, Wang Y, Sun L, Wang J, Li F, Li Y, Zhao Z (2016) Naringin ameliorates bone loss induced by sciatic neurectomy and increases Semaphorin 3A expression in denervated bone. Sci Rep 6:24562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    CAS  PubMed  Google Scholar 

  • Marie PJ (2007) Strontium ranelate: new insights into its dual mode of action. Bone 40:S5–S8

    Article  CAS  Google Scholar 

  • McNaughton SA, Wattanapenpaiboon N, Wark JD, Nowson CA (2011) An energy-dense, nutrient-poor dietary pattern is inversely associated with bone health in women. J Nutr 141:1516–1523

    Article  CAS  PubMed  Google Scholar 

  • Nielsen IL, Haren GR, Magnussen EL, Dragsted LO, Rasmussen SE (2003) Quantifcation of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency. J Agric Food Chem 51:5861–5866

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson C et al (2009) The role of liver-derived insulin-like growth factor-I. Endocr Rev 30:494–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotkin LI (2014) Apoptotic osteocytes and the control of targeted bone resorption. Curr Osteoporos Rep 12:121–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Riso P et al (2005) Effects of blood orange juice intake on antioxidant bioavailability and on different markers related to oxidative stress. J Agric Food Chem 53:941–947

    Article  CAS  PubMed  Google Scholar 

  • Rizzoli R, Bianchi ML, Garabédian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46:294–305

    Article  PubMed  Google Scholar 

  • Shim M, Karnuah A, Mitchell A, Anthony N, Pesti G, Aggrey S (2012) The effects of growth rate on leg morphology and tibia breaking strength, mineral density, mineral content, and bone ash in broilers. Poult Sci 91:1790–1795

    Article  CAS  PubMed  Google Scholar 

  • Singh Z, Sharma S, Kaur A (2018) Antitoxic effects of naringin: a flavonoid with diverse biological activities. World J Pharm Res 7:484–489

    CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Sontakke A, Tare RS (2002) A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chim Acta 318:145–148

    Article  CAS  PubMed  Google Scholar 

  • Tay J, Bay B, Yeo J, Harris M, Meghji S, Dheen S (2004) Identification of RANKL in osteolytic lesions of the facial skeleton. J Dent Res 83:349–353

    Article  CAS  PubMed  Google Scholar 

  • Ton FN, Gunawardene SC, Lee H, Neer RM (2005) Effects of low-dose prednisone on bone metabolism. J Bone Miner Res 20:464–470

    Article  CAS  PubMed  Google Scholar 

  • Umemoto S, Makuuchi H, Amemiya T, Yamaguchi H, Oka S, Owada T, Koizumi K (1991) Intra-abdominal desmoid tumors in familial polyposis coli: a case report of tumor regression by prednisolone therapy. Dis Colon Rectum 34:89–93

    Article  CAS  PubMed  Google Scholar 

  • Wattel A, Kamel S, Prouillet C, Petit JP, Lorget F, Offord E, Brazier M (2004) Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NFκB and AP-1. J Cell Biochem 92:285–295

    Article  CAS  PubMed  Google Scholar 

  • Welch AA, Hardcastle AC (2014) The effects of flavonoids on bone. Curr Osteoporos Rep 12:205–210

    Article  PubMed  Google Scholar 

  • Xian L et al (2012) Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 18:1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Wang L, Walzem RL, Miller EG, Pike LM, Patil BS (2005) Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J Agric Food Chem 53:2009–2014

    Article  CAS  PubMed  Google Scholar 

  • Yu GY, Zheng GZ, Chang B, Hu QX, Lin FX, Liu DZ, Wu CC, Du SX, Li XD (2016) Naringin stimulates osteogenic differentiation of rat bone marrow stromal cells via activation of the notch signaling pathway. Stem Cells Int. https://doi.org/10.1155/2016/7130653

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zheng L, Zhao Z, Shi J, Wang X, Huang J (2014) Grape seed proanthocyanidins inhibit H2O2-induced osteoblastic MC3T3-E1 cell apoptosis via ameliorating H2O2-induced mitochondrial dysfunction. J Toxicol Sci 39:803–813

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eslam Muhammad Bastawy or Amer Ali Abd El-Hafeez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The authors declare that there are no studies conducted with human participants. Animals were treated in accordance with the guidelines of the Committee on Animal Experimentation of Beni-Seuif University, Egypt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastawy, E.M., Ahmed, R.R., Abd El-Hafeez, A.A. et al. Grapefruit juice exerts anti-osteoporotic activities in a prednisolone-induced osteoporosis rat femoral fracture model, possibly via the RANKL/OPG axis. Cytotechnology 71, 769–783 (2019). https://doi.org/10.1007/s10616-019-00321-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00321-6

Keywords

Navigation