Advertisement

Cytotechnology

, Volume 68, Issue 4, pp 645–658 | Cite as

Fetal heart extract facilitates the differentiation of human umbilical cord blood-derived mesenchymal stem cells into heart muscle precursor cells

  • Truc Le-Buu Pham
  • Tam Thanh Nguyen
  • Anh Van Bui
  • My Thu Nguyen
  • Phuc Van Pham
Original Research

Abstract

Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are a promising stem cell source with the potential to modulate the immune system as well as the capacity to differentiate into osteoblasts, chondrocytes, and adipocytes. In previous publications, UCB-MSCs have been successfully differentiated into cardiomyocytes. This study aimed to improve the efficacy of differentiation of UCB-MSCs into cardiomyocytes by combining 5-azacytidine (Aza) with mouse fetal heart extract (HE) in the induction medium. UCB-MSCs were isolated from umbilical cord blood according to a published protocol. Murine fetal hearts were used to produce fetal HE using a rapid freeze–thaw procedure. MSCs at the 3rd to 5th passage were differentiated into cardiomyocytes in two kinds of induction medium: complete culture medium plus Aza (Aza group) and complete culture medium plus Aza and fetal HE (Aza + HE group). The results showed that the cells in both kinds of induction medium exhibited the phenotype of cardiomyocytes. At the transcriptional level, the cells expressed a number of cardiac muscle-specific genes such as Nkx2.5, Gata 4, Mef2c, HCN2, hBNP, α-Ca, cTnT, Desmin, and β-MHC on day 27 in the Aza group and on day 18 in the Aza + HE group. At the translational level, sarcomic α-actin was expressed on day 27 in the Aza group and day 18 in the Aza + HE group. Although they expressed specific genes and proteins of cardiac muscle cells, the induced cells in both groups did not contract and beat spontaneously. These properties are similar to properties of heart muscle precursor cells in vivo. These results demonstrated that the fetal HE facilitates the differentiation process of human UCB-MSCs into heart muscle precursor cells.

Keywords

5-Azacytidine Fetal heart extract Heart muscle precursor cells Mesenchymal stem cells Umbilical cord blood 

Notes

Acknowledgments

This work was supported by Vietnam National University, HCM city, Viet Nam under grant (B2011-18-07TD).

Conflict of interest

The author’s declare that they do not have any competing or financial interests.

Supplementary material

10616_2014_9812_MOESM1_ESM.tif (333 kb)
Figure. 1S. RT-PCR band density was analyzed by ImageJ software (TIFF 332 kb)

References

  1. Angst BD, Khan LU, Severs NJ, Whitely K, Rothery S, Thompson RP, Magee AI, Gourdie RG (1997) Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ Res 80:88–94CrossRefGoogle Scholar
  2. Baharvand H, Piryaei A, Rohani R, Taei A, Heidari MH, Hosseini A (2006) Ultrastructural comparison of developing mouse embryonic stem cell- and in vivo-derived cardiomyocytes. Cell Biol Int 30:800–807CrossRefGoogle Scholar
  3. Bel A, Messas E, Agbulut O, Richard P, Samuel JL, Bruneval P, Hagege AA, Menasche P (2003) Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution. Circulation 108:Ii247–Ii252CrossRefGoogle Scholar
  4. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277CrossRefGoogle Scholar
  5. Bhang SH, Gwak SJ, Lee TJ, Kim SS, Park HH, Park MH, Lee DH, Lee SH, Kim BS (2010) Cyclic mechanical strain promotes transforming-growth-factor-beta1-mediated cardiomyogenic marker expression in bone-marrow-derived mesenchymal stem cells in vitro. Biotechnol Appl Biochem 55:191–197CrossRefGoogle Scholar
  6. Brade T, Kumar S, Cunningham TJ, Chatzi C, Zhao X, Cavallero S, Li P, Sucov HM, Ruiz-Lozano P, Duester G (2011) Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2 (Cambridge, England). Development 138:139–148CrossRefGoogle Scholar
  7. Cao N, Liao J, Liu Z, Zhu W, Wang J, Liu L, Yu L, Xu P, Cui C, Xiao L, Yang HT (2011) In vitro differentiation of rat embryonic stem cells into functional cardiomyocytes. Cell Res 21:1316–1331CrossRefGoogle Scholar
  8. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH, Gepstein L, Levenberg S (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100:263–272CrossRefGoogle Scholar
  9. Chacko KJ (1976) Observations on the ultrastructure of developing myocardium of rat embryos. J Morphol 150:681–709CrossRefGoogle Scholar
  10. Chen K, Wu L, Wang ZZ (2008) Extrinsic regulation of cardiomyocyte differentiation of embryonic stem cells. J Cell Biochem 104:119–128CrossRefGoogle Scholar
  11. Chiavegato A, Bollini S, Pozzobon M, Callegari A, Gasparotto L, Taiani J, Piccoli M, Lenzini E, Gerosa G, Vendramin I, Cozzi E, Angelini A, Iop L, Zanon GF, Atala A, De Coppi P, Sartore S (2007) Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol 42:746–759Google Scholar
  12. Choi YS, Dusting GJ, Stubbs S, Arunothayaraj S, Han XL, Collas P, Morrison WA, Dilley RJ (2010) Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med 14:878–889CrossRefGoogle Scholar
  13. Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495CrossRefGoogle Scholar
  14. Christoforou N, Chellappan M, Adler AF, Kirkton RD, Wu T, Addis RC, Bursac N, Leong KW (2013) Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming. PLoS ONE 8:e63577CrossRefGoogle Scholar
  15. Connell JP, Augustini E, Moise KJ Jr, Johnson A, Jacot JG (2013) Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes. J Cell Mol Med 17:774–781CrossRefGoogle Scholar
  16. De Wert G, Mummery C (2003) Human embryonic stem cells: research, ethics and policy. Hum Reprod 18:672–682CrossRefGoogle Scholar
  17. DeJonge MH, Zachman RD (1995) The effect of maternal ethanol ingestion on fetal rat heart vitamin A: a model for fetal alcohol syndrome. Pediatr Res 37:418–423CrossRefGoogle Scholar
  18. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefGoogle Scholar
  19. Ellison GM, Torella D, Karakikes I, Nadal-Ginard B (2007) Myocyte death and renewal: modern concepts of cardiac cellular homeostasis. Nat Clin Pract Cardiovasc Med 4:S52–S59CrossRefGoogle Scholar
  20. Gaustad KG, Boquest AC, Anderson BE, Gerdes AM, Collas P (2004) Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun 314:420–427CrossRefGoogle Scholar
  21. Gherghiceanu M, Barad L, Novak A, Reiter I, Itskovitz-Eldor J, Binah O, Popescu LM (2011) Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure. J Cell Mol Med 15:2539–2551CrossRefGoogle Scholar
  22. Gillum N, Sarvazyan N (2008) Adhesion proteins, stem cells, and arrhythmogenesis. Cardiovasc Toxicol 8:1–13CrossRefGoogle Scholar
  23. Gonzalez MA, Bernad A (2012) Characteristics of adult stem cells. Adv Exp Med Biol 741:103–120CrossRefGoogle Scholar
  24. Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS (2013) Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell 12:407–412CrossRefGoogle Scholar
  25. Hakelien AM, Gaustad KG, Collas P (2004) Transient alteration of cell fate using a nuclear and cytoplasmic extract of an insulinoma cell line. Biochem Biophys Res Commun 316:834–841CrossRefGoogle Scholar
  26. Hakuno D, Fukuda K, Makino S, Konishi F, Tomita Y, Manabe T, Suzuki Y, Umezawa A, Ogawa S (2002) Bone marrow-derived regenerated cardiomyocytes (CMG cells) express functional adrenergic and muscarinic receptors. Circulation 105:380–386CrossRefGoogle Scholar
  27. Hammoud L, Xiang F, Lu X, Brunner F, Leco K, Feng Q (2007) Endothelial nitric oxide synthase promotes neonatal cardiomyocyte proliferation by inhibiting tissue inhibitor of metalloproteinase-3 expression. Cardiovasc Res 75:359–368CrossRefGoogle Scholar
  28. Hofmann F, Biel M, Kaupp UB (2005) International Union of Pharmacology. LI. Nomenclature and structure-function relationships of cyclic nucleotide-regulated channels. Pharmacol Rev 57:455–462CrossRefGoogle Scholar
  29. Hou J, Lu AL, Liu BW, Xing YJ, Da J, Hou ZL, Ai SY (2013) Combination of BMP-2 and 5-AZA is advantageous in rat bone marrow-derived mesenchymal stem cells differentiation into cardiomyocytes. Cell Biol Int 37:1291–1299CrossRefGoogle Scholar
  30. Iafolla MA, Tay J, Allan DS (2014) Transplantation of umbilical cord blood-derived cells for novel indications in regenerative therapy or immune modulation: a scoping review of clinical studies. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 20:20–25CrossRefGoogle Scholar
  31. Jumabay M, Zhang R, Yao Y, Goldhaber JI, Bostrom KI (2010) Spontaneously beating cardiomyocytes derived from white mature adipocytes. Cardiovasc Res 85:17–27CrossRefGoogle Scholar
  32. Kehat I, Gepstein A, Spira A, Itskovitz-Eldor J, Gepstein L (2002) High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ Res 91:659–661CrossRefGoogle Scholar
  33. Koninckx R, Daniels A, Windmolders S, Carlotti F, Mees U, Steels P, Rummens JL, Hendrikx M, Hensen K (2011) Mesenchymal stem cells or cardiac progenitors for cardiac repair? A comparative study. Cell Mol Life Sci CMLS 68:2141–2156CrossRefGoogle Scholar
  34. Kuzmenkin A, Liang H, Xu G, Pfannkuche K, Eichhorn H, Fatima A, Luo H, Saric T, Wernig M, Jaenisch R, Fatima A, Luo H, Saric T, Wernig M, Jaenisch R, Hescheler J (2009) Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB J Off Pub Fed Am Soc Exp Biol 23:4168–4180Google Scholar
  35. Labovsky V, Hofer EL, Feldman L, Fernandez Vallone V, Garcia Rivello H, Bayes-Genis A, Hernando Insua A, Levin MJ, Chasseing NA (2010) Cardiomyogenic differentiation of human bone marrow mesenchymal cells: role of cardiac extract from neonatal rat cardiomyocytes. Differ Res Biol Divers 79:93–101CrossRefGoogle Scholar
  36. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335CrossRefGoogle Scholar
  37. Li X, Yu X, Lin Q, Deng C, Shan Z, Yang M, Lin S (2007) Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol 42:295–303CrossRefGoogle Scholar
  38. Liau B, Zhang D, Bursac N (2012) Functional cardiac tissue engineering. Regener Med 7:187–206CrossRefGoogle Scholar
  39. Lin SC, Dolle P, Ryckebusch L, Noseda M, Zaffran S, Schneider MD, Niederreither K (2010) Endogenous retinoic acid regulates cardiac progenitor differentiation. Proc Natl Acad Sci USA 107:9234–9239CrossRefGoogle Scholar
  40. Massion PB, Dessy C, Desjardins F, Pelat M, Havaux X, Belge C, Moulin P, Guiot Y, Feron O, Janssens SC, Moulin P, Guiot Y, Feron O, Janssens S, Balligand JL (2004) Cardiomyocyte-restricted overexpression of endothelial nitric oxide synthase (NOS3) attenuates beta-adrenergic stimulation and reinforces vagal inhibition of cardiac contraction. Circulation 110:2666–2672Google Scholar
  41. Mastitskaya S, Denecke B (2009) Human spongiosa mesenchymal stem cells fail to generate cardiomyocytes in vitro. J Negat Results Biomed 8:11CrossRefGoogle Scholar
  42. Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S, Desnos M, Hagège AA (2008) Themyoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200Google Scholar
  43. Mujoo K, Sharin VG, Bryan NS, Krumenacker JS, Sloan C, Parveen S, Nikonoff LE, Kots AY, Murad F (2008) Role of nitric oxide signaling components in differentiation of embryonic stem cells into myocardial cells. Proc Natl Acad Sci USA 105:18924–18929CrossRefGoogle Scholar
  44. Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2003) Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 92:139–150CrossRefGoogle Scholar
  45. Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD (2008) DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol 28:752–771CrossRefGoogle Scholar
  46. Pham PV, Vu NB, Pham VM, Truong NH, Pham TL, Dang LT, Nguyen TT, Bui AN, Phan NK (2014) Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells. J Transl Med 12:56CrossRefGoogle Scholar
  47. Pranke P, Hendrikx J, Debnath G, Alespeiti G, Rubinstein P, Nardi N, Visser J (2005) Immunophenotype of hematopoietic stem cells from placental/umbilical cord blood after culture. Braz J Med Biol Res (Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica) 38:1775–1789Google Scholar
  48. Rangappa S, Fen C, Lee EH, Bongso A, Sim EK (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779CrossRefGoogle Scholar
  49. Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116CrossRefGoogle Scholar
  50. Siegel G, Krause P, Wohrle S, Nowak P, Ayturan M, Kluba T, Brehm BR, Neumeister B, Kohler D, Rosenberger P, Brehm BR, Neumeister B, Köhler D, Rosenberger P, Just L, Northoff H, Schäfer R (2012) Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential. Stem Cells Dev 21:2457–2470Google Scholar
  51. Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F (2006) Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 66:2794–2800CrossRefGoogle Scholar
  52. Supokawej A, Kheolamai P, Nartprayut K, U-pratya Y, Manochantr S, Chayosumrit M, Issaragrisil S (2013) Cardiogenic and myogenic gene expression in mesenchymal stem cells after 5-azacytidine treatment. Turk J Haematol 30:115–121CrossRefGoogle Scholar
  53. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416Google Scholar
  54. Wobus AM, Kaomei G, Shan J, Wellner MC, Rohwedel J, Ji G, Fleischmann B, Katus HA, Hescheler J, Franz WM (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol 29:1525–1539CrossRefGoogle Scholar
  55. Xing Y, Lv A, Wang L, Yan X (2012) The combination of angiotensin II and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem 360:279–287CrossRefGoogle Scholar
  56. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96CrossRefGoogle Scholar
  57. Yoshida M, Horinouchi S, Beppu T (1995) Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. BioEssays News Rev Mol cell Dev Biol 17:423–430CrossRefGoogle Scholar
  58. Yu T, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura M, Kawamura T, Ito E, Kawaguchi N, Kawamura T, Ito E, Kawaguchi N, Sawa Y, Matsuura N (2013) In vivo differentiation of induced pluripotent stem cell-derived cardiomyocytes. Circ J 77:1297–1306Google Scholar
  59. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41CrossRefGoogle Scholar
  60. Zhang Z, Li H, Ma Z, Feng J, Gao P, Dong H, Zhang Z (2012) Efficient cardiomyogenic differentiation of bone marrow mesenchymal stromal cells by combination of Wnt11 and bone morphogenetic protein 2. Exp Biol Med 237:768–776CrossRefGoogle Scholar
  61. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215CrossRefGoogle Scholar
  62. Zhao JW, Zhang MR, Ji QY, Xing FJ, Meng LJ, Wang Y (2012) The role of slingshot-1L (SSH1L) in the differentiation of human bone marrow mesenchymal stem cells into cardiomyocyte-like cells. Molecules 17:14975–14994CrossRefGoogle Scholar
  63. Zhu Y, Liu T, Song K, Ning R, Ma X, Cui Z (2009) ADSCs differentiated into cardiomyocytes in cardiac microenvironment. Mol Cell Biochem 324:117–129CrossRefGoogle Scholar
  64. Ziman AP, Gomez-Viquez NL, Bloch RJ, Lederer WJ (2010) Excitation-contraction coupling changes during postnatal cardiac development. J Mol Cell Cardiol 48:379–386CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Truc Le-Buu Pham
    • 1
  • Tam Thanh Nguyen
    • 1
  • Anh Van Bui
    • 1
  • My Thu Nguyen
    • 1
  • Phuc Van Pham
    • 1
  1. 1.Laboratory of Stem Cell Research and Application, University of ScienceVietnam National UniversityHo Chi Minh CityVietnam

Personalised recommendations