Skip to main content
Log in

On the chaotic diffusion in multidimensional Hamiltonian systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. We follow the same approach given in Cincotta and Giordano (2016).

  2. The generalization of a saddle equilibrium point, it is defined as the connected intersection of the stable and unstable manifolds or, in Arnold jargon, arriving and departing whiskers, \(W^-\) and \(W^+\), respectively [see Arnold (1964), Giorgilli (1990) for further details].

  3. Note that their intersections in action space are different.

  4. For a multiple resonance or an overlapped domain of resonances where there is not any specific direction \(I_f=\sqrt{I_1^2+I_2^2}\).

  5. See for instance Efthymiopoulos et al. (1999), Miguel et al. (2014) for the standard map in case of large values of the perturbation parameter.

  6. This nominal set is identical to those experiments labeled as 2–9 in MCB16.

References

  • Arnold, V.I.: On the nonstability of dynamical systems with many degrees of freedom. Sov. Math. Dokl. 5, 581–585 (1964)

    Google Scholar 

  • Baluev, R.V.: Orbital structure of the GJ876 extrasolar planetary system based on the latest Keck and HARPS radial velocity data. Celest. Mech. Dyn. Astron. 111, 235–266 (2011)

    Article  ADS  MATH  Google Scholar 

  • Barnes, R., Deitrick, R., Greenberg, R., Quinn, T.R., Raymond, S.N.: Long-lived chaotic orbital evolution of exoplanets in mean motion resonances with mutual inclinations. Astrophys. J. 801, 101 (2015)

    Article  ADS  Google Scholar 

  • Batygin, K., Deck, K.M., Holman, M.J.: Dynamical evolution of multi-resonant systems: the case of GJ876. Astron. J. 149, 167 (2015)

    Article  ADS  Google Scholar 

  • Beaugé, C., Michtchenko, T.A.: Modelling the high-eccentricity planetary three-body problem. Application to the GJ876 planetary system. Mon. Notices R. Astron. Soc. 341, 760 (2003)

    Article  ADS  Google Scholar 

  • Bernard, P., Kaloshin, V., Zhang, K.: Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders. Acta Math. 217, 1 (2016)

    MathSciNet  MATH  Google Scholar 

  • Bessi, U.: Arnold’s diffusion with two resonances. J. Differ. Equ. 137, 211 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cachucho, F., Cincotta, P.M., Ferraz-Mello, S.: Chirikov diffusion in the asteroidal three-body resonance (5, 2, 2). Celest. Mech. Dyn. Astron. 108, 35 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Capiński, M.J., Gidea, M., de la Llave, R.: Arnold diffusion in the planar elliptic restricted three-body problem: mechanism and numerical verification. Nonlinearity 30, 329 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cincotta, P.M.: Arnold diffusion: an overview through dynamical astronomy. New Astron. Rev. 46, 13–39 (2002)

    Article  ADS  Google Scholar 

  • Cincotta, P.M., Giordano, C.M.: Theory and applications of the mean exponential growth factor of nearby orbits (MEGNO) method. Lect. Notes Phys. 915, 93 (2016)

    Article  Google Scholar 

  • Cincotta, P.M., Simó, C.: Simple tools to study global dynamics in non-axisymmetric galactic potentials I. Astron. Astrophys. Suppl. Ser. 147, 205 (2000)

    Article  ADS  Google Scholar 

  • Cincotta, P.M., Giordano, C.M., Simó, C.: Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Physica D 182, 11 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Cincotta, P.M., Efthymiopoulos, C., Giordano, C.M., Mestre, M.F.: Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river. Physica D 266, 49 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1 (1943)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chirikov, B.V.: Preprint No 50, When a dynamical system becomes a statistical one? Institute of Nuclear Physics, Novosibirsk (1966) (in Russian)

  • Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263 (1979). (Ch79)

    Article  ADS  MathSciNet  Google Scholar 

  • Contopoulos, G.: Order and chaos in spiral galaxies. Celest. Mech. Dyn. Astron. 104, 3 (2009)

    Article  ADS  MATH  Google Scholar 

  • Contopoulos, G., Grosbol, P.: Stellar dynamics of spiral galaxies: nonlinear effects at the 4/1 resonance. Astron. Astrophys. 155, 11 (1986)

    ADS  MATH  Google Scholar 

  • Cordeiro, R.R.: Anomalous diffusion in the asteroid belt. Astron. J. 132, 2114 (2006)

    Article  ADS  Google Scholar 

  • Cordeiro, R.R., Mendes de Souza, L.A.: Anomalous diffusion in the first-order Jovian resonance. Astron. Astrophys. 439, 375 (2005)

    Article  ADS  Google Scholar 

  • Deck, K.M., Holman, M.J., Agol, E., Carter, J.A., Lissauer, J.J., Ragozzine, D., et al.: Rapid dynamical chaos in an exoplanetary system. Astrophys. J. 755, L21 (2012)

    Article  ADS  Google Scholar 

  • Delshams, A., Shaefer, R.G.: Arnold diffusion for a complete family of perturbations. Regul. Chaotic Dyn. 22, 78 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Delshams, A., Gidea, M., Roldán, P.: Arnolds mechanism of diffusion in the spatial circular restricted three-body problem: a semi-analytical argument. Physica D 334, 29 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Efthymiopoulos, C.: Canonical perturbation theory, stability and diffusion in Hamiltonian systems: applications in dynamical astronomy. In: Cincotta, P.M., Giordano, C. M., Efthymiopoulos, C. (eds.) Third La Plata International School on Astronomy and Geophysics: Chaos, Diffusion and Non-integrability in Hamiltonian Systems Applications to Astronomy (2012)

  • Efthymiopoulos, C., Harsoula, M.: The speed of Arnold diffusion. Physica D 251, 19–38 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Efthymiopoulos, C., Contopoulos, G., Voglis, N.: Cantori islands and asymptotic curves in the stickiness region. Celest. Mech. Dyn. Astron. 73, 221–230 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Féjoz, J., Guàrdia, M., Kaloshin, V., Roldán, P.: Kirkwood gaps and diffusion along mean motion resonances in the restricted planar three-body problem. J. Eur. Math. Soc. 18, 2315 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Froeschlé, C., Lega, E.: On the structure of symplectic mappings. The fast Lyapunov indicator: a very sensitive tool. Celest. Mech. Dyn. Astron. 78, 167–195 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Froeschlé, C., Guzzo, M., Lega, E.: Local and global diffusion along resonant lines in discrete quasi-integrable dynamical systems. Celest. Mech. Dyn. Astron. 92, 243 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Froeschlé, C., Lega, E., Guzzo, M.: Analysis of the chaotic behaviour of orbits diffusing along the Arnold web. Celest. Mech. Dyn. Astron. 95, 141 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gayon, J., Marzari, F., Scholl, H.: Stable chaos in the 55Cnc exoplanetary system? Mon. Notices R. Astron. Soc. 389, L1–L3 (2008)

    Article  ADS  Google Scholar 

  • Giordano, C.M., Cincotta, P.M.: The Shannon entropy as a measure of diffusion in multidimensional dynamical systems. Celest. Mech. Dyn. Astron. (2017) (submitted)

  • Giorgilli, A.: New insights on the stability problem from recent results in classical perturbation theory. In: Benest, D., Froeschlé, C. (eds.) Les Methodes Modernes de la Mecanique Celeste, vol. 249. Frontières (1990)

  • Guzzo, M., Lega, E., Froechlé, C.: First numerical evidence of global Arnold diffusion in quasi-integrable systems. Discrete Contin. Dyn. Syst. B 5, 687 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Guzzo, M., Lega, E., Froeshlé, C.: First numerical investigation of a conjecture by N. N. Nekhoroshev about stability in quasi-integrable systems. Chaos 21, 033101 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hadjidemetriou, J.D.: Resonant periodic motion and the stability of extrasolar planetary systems. Celest. Mech. Dyn. Astron. 83, 141 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Izrailev, F.M., Chirikov, B.V.: Stochasticity of a simple dynamical model with divided phase space, Preprint N\(^{\circ }\) 191. Institute of Nuclear Physics, Novosibirsk (1968) (in Russian)

  • Kley, W., Lee, M.H., Murray, N., Peale, S.: Modeling the resonant planetary system GJ 876. J. Astron. Astrophys. 437, 727 (2005)

    Article  ADS  Google Scholar 

  • Laughlin, G., Chambers, J.E.: Short-term dynamical interactions among extrasolar planets. Astrophys. J. 551, L109 (2001)

    Article  ADS  Google Scholar 

  • Laskar, J.: The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones. Icarus 88, 266 (1990)

    Article  ADS  Google Scholar 

  • Lega, E., Guzzo, M., Froeschlé, C.: Detection of Arnold diffusion in Hamiltonian systems. Physica D 182, 179 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lega, E., Froeschlé, C., Guzzo, M.: Diffusion in Hamiltonian quasi-integrable systems. Lect. Notes Phys. 729, 29 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lochak, P.: Arnold diffusion; a compendium of remark and questions. In: Simó, C. (ed.) Hamiltonian Systems with Three or More Degrees of Freedom, NATO ASI Series C, vol. 533. Kluwer, Dordrecht (1999)

    Google Scholar 

  • Maffione, N.P., Gómez, F.A., Cincotta, P.M., Giordano, C.M., Cooper, A.P., O’Shea, B.W.: On the relevance of chaos for halo stars in the Solar Neighbourhood. Mon. Notices R. Astron. Soc. 453, 2830 (2015)

    Article  ADS  Google Scholar 

  • Marcy, G., Butler, R., Vogt, S., Fischer, D., Lissauer, J.: A planetary companion to a nearby M4 Dwarf, Gliese 876. Astrophys. J. 505, L147 (1998)

    Article  ADS  Google Scholar 

  • Martí, J.G., Giuppone, C.A., Beaugé, C.: Dynamical analysis of the Gliese-876 Laplace resonance. Mon. Notices R. Astron. Soc. 433, 928 (2013)

    Article  ADS  Google Scholar 

  • Martí, J.G., Cincotta, P.M., Beaugé, C.: Chaotic diffusion in the Gliese-876 planetary system. Mon. Notices R. Astron. Soc. 460, 1094 (2016). (MCB16)

    Article  ADS  Google Scholar 

  • Meiss, J.D.: Symplectic maps, variational principles, and transport. Rev. Mod. Phys. 64, 795 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Merritt, D., Friedman, T.: Triaxial galaxies with cusps. Astrophys. J. 460, 136 (1996)

    Article  ADS  Google Scholar 

  • Merritt, D., Valluri, M.: Chaos and mixing in triaxial stellar systems. Astrophys. J. 471, 82 (1996)

    Article  ADS  Google Scholar 

  • Miguel, N., Simó, C., Vieiro, A.: On the effect of islands in the diffusive properties of the standard map, for large parameter values. Found. Comput. Math. 15, 89 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Milani, A., Nobili, A.M.: An example of stable chaos in the solar system. Nature 357, 569 (1992)

    Article  ADS  Google Scholar 

  • Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russ. Math. Surv. 32, 1 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson, B.E., Robertson, P., Pritchard, S.: An empirically derived three-dimensional Laplace resonance in the GJ 876 planetary system. IAU Gen. Assem. 22, 2258089 (2015)

    ADS  Google Scholar 

  • Papaphilippou, Y., Laskar, J.: Global dynamics of triaxial galactic models through frequency map analysis. Astron. Astrophys. 329, 451 (1998)

    ADS  Google Scholar 

  • Rivera, E.J., Lissauer, J.J.: Stability analysis of the planetary system orbiting \(\upsilon \) andromedae. Astrophys. J. 530, 454 (2000)

    Article  ADS  Google Scholar 

  • Rivera, E., Laughlin, G., Butler, R., Vogt, S., Haghighipour, N., Meschiari, S.: The Lick-Carnegie exoplanet survey: a Uranus-Mass fourth planet for GJ 876 in an extrasolar Laplace configuration. Astrophys. J. 719, 890 (2010)

    Article  ADS  Google Scholar 

  • Simó, C.: Global dynamics and fast indicators. In: Broer, H.W., Krauskopf, B., Vegter, G. (eds.) Global Analysis of Dynamical Systems, pp. 373–390. IOP Publishing, Bristol (2001)

    Google Scholar 

  • Tsiganis, K.: Chaotic diffusion of asteroids. Lect. Notes Phys. 729, 111 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tsiganis, K., Varvoglis, H., Dvorak, R.: Chaotic diffusion and effective stability of Jupiter Trojans. Celest. Mech. Dyn. Astron. 92, 71 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Varvoglis, H.: Chaos, random walks and diffusion in Hamiltonian systems. In: Benest, D., Froeschlé, C., Lega, E. (eds.) Hamiltonian systems and Fourier Analysis, vol. 247. Cambridge Scientific Publishers (2005)

  • Venegeroles, R.: Calculation of superdiffusion for the Chirikov–Taylor model. Phys. Rev. Lett. 101, 054102 (2008)

    Article  ADS  Google Scholar 

  • Wisdom, J.: The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. Astron. J. 85, 1122 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors were supported with grants from the Consejo de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), the Universidad Nacional de La Plata (UNLP) and Universidad Nacional de Córdoba (UNC). This work used computational resources from CCAD UNC, in particular the Mendieta Cluster, which is part of SNCAD MinCyT, Argentina. Other numerical simulations were carried out on the local computing resources from the Instituto de Astronomía Teórica y Experimental (IATE), at the UNC, the Instituto de Astrofísica de La Plata (IALP) CONICET-UNLP and also on the IFLySIB computational resources at the Instituto de Física de Líquidos y Sistemas Biológicos, CONICET-UNLP. PMC would like to acknowledge C. Simó and A. Vieiro for their valuable comments, suggestions and discussions. The two anonymous reviewers are also acknowledged for their criticism that helped us to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Cincotta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cincotta, P.M., Giordano, C.M., Martí, J.G. et al. On the chaotic diffusion in multidimensional Hamiltonian systems. Celest Mech Dyn Astr 130, 7 (2018). https://doi.org/10.1007/s10569-017-9797-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-017-9797-1

Keywords

Navigation