Advertisement

On the chaotic diffusion in multidimensional Hamiltonian systems

  • P. M. Cincotta
  • C. M. Giordano
  • J. G. Martí
  • C. Beaugé
Original Article

Abstract

We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.

Keywords

Chaotic diffusion Hamiltonian systems Planetary dynamics 

Notes

Acknowledgements

The authors were supported with grants from the Consejo de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), the Universidad Nacional de La Plata (UNLP) and Universidad Nacional de Córdoba (UNC). This work used computational resources from CCAD UNC, in particular the Mendieta Cluster, which is part of SNCAD MinCyT, Argentina. Other numerical simulations were carried out on the local computing resources from the Instituto de Astronomía Teórica y Experimental (IATE), at the UNC, the Instituto de Astrofísica de La Plata (IALP) CONICET-UNLP and also on the IFLySIB computational resources at the Instituto de Física de Líquidos y Sistemas Biológicos, CONICET-UNLP. PMC would like to acknowledge C. Simó and A. Vieiro for their valuable comments, suggestions and discussions. The two anonymous reviewers are also acknowledged for their criticism that helped us to improve this manuscript.

References

  1. Arnold, V.I.: On the nonstability of dynamical systems with many degrees of freedom. Sov. Math. Dokl. 5, 581–585 (1964)Google Scholar
  2. Baluev, R.V.: Orbital structure of the GJ876 extrasolar planetary system based on the latest Keck and HARPS radial velocity data. Celest. Mech. Dyn. Astron. 111, 235–266 (2011)ADSCrossRefzbMATHGoogle Scholar
  3. Barnes, R., Deitrick, R., Greenberg, R., Quinn, T.R., Raymond, S.N.: Long-lived chaotic orbital evolution of exoplanets in mean motion resonances with mutual inclinations. Astrophys. J. 801, 101 (2015)ADSCrossRefGoogle Scholar
  4. Batygin, K., Deck, K.M., Holman, M.J.: Dynamical evolution of multi-resonant systems: the case of GJ876. Astron. J. 149, 167 (2015)ADSCrossRefGoogle Scholar
  5. Beaugé, C., Michtchenko, T.A.: Modelling the high-eccentricity planetary three-body problem. Application to the GJ876 planetary system. Mon. Notices R. Astron. Soc. 341, 760 (2003)ADSCrossRefGoogle Scholar
  6. Bernard, P., Kaloshin, V., Zhang, K.: Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders. Acta Math. 217, 1 (2016)MathSciNetzbMATHGoogle Scholar
  7. Bessi, U.: Arnold’s diffusion with two resonances. J. Differ. Equ. 137, 211 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. Cachucho, F., Cincotta, P.M., Ferraz-Mello, S.: Chirikov diffusion in the asteroidal three-body resonance (5, 2, 2). Celest. Mech. Dyn. Astron. 108, 35 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. Capiński, M.J., Gidea, M., de la Llave, R.: Arnold diffusion in the planar elliptic restricted three-body problem: mechanism and numerical verification. Nonlinearity 30, 329 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. Cincotta, P.M.: Arnold diffusion: an overview through dynamical astronomy. New Astron. Rev. 46, 13–39 (2002)ADSCrossRefGoogle Scholar
  11. Cincotta, P.M., Giordano, C.M.: Theory and applications of the mean exponential growth factor of nearby orbits (MEGNO) method. Lect. Notes Phys. 915, 93 (2016)CrossRefGoogle Scholar
  12. Cincotta, P.M., Simó, C.: Simple tools to study global dynamics in non-axisymmetric galactic potentials I. Astron. Astrophys. Suppl. Ser. 147, 205 (2000)ADSCrossRefGoogle Scholar
  13. Cincotta, P.M., Giordano, C.M., Simó, C.: Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Physica D 182, 11 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Cincotta, P.M., Efthymiopoulos, C., Giordano, C.M., Mestre, M.F.: Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river. Physica D 266, 49 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1 (1943)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. Chirikov, B.V.: Preprint No 50, When a dynamical system becomes a statistical one? Institute of Nuclear Physics, Novosibirsk (1966) (in Russian)Google Scholar
  17. Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263 (1979). (Ch79)ADSMathSciNetCrossRefGoogle Scholar
  18. Contopoulos, G.: Order and chaos in spiral galaxies. Celest. Mech. Dyn. Astron. 104, 3 (2009)ADSCrossRefzbMATHGoogle Scholar
  19. Contopoulos, G., Grosbol, P.: Stellar dynamics of spiral galaxies: nonlinear effects at the 4/1 resonance. Astron. Astrophys. 155, 11 (1986)ADSzbMATHGoogle Scholar
  20. Cordeiro, R.R.: Anomalous diffusion in the asteroid belt. Astron. J. 132, 2114 (2006)ADSCrossRefGoogle Scholar
  21. Cordeiro, R.R., Mendes de Souza, L.A.: Anomalous diffusion in the first-order Jovian resonance. Astron. Astrophys. 439, 375 (2005)ADSCrossRefGoogle Scholar
  22. Deck, K.M., Holman, M.J., Agol, E., Carter, J.A., Lissauer, J.J., Ragozzine, D., et al.: Rapid dynamical chaos in an exoplanetary system. Astrophys. J. 755, L21 (2012)ADSCrossRefGoogle Scholar
  23. Delshams, A., Shaefer, R.G.: Arnold diffusion for a complete family of perturbations. Regul. Chaotic Dyn. 22, 78 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. Delshams, A., Gidea, M., Roldán, P.: Arnolds mechanism of diffusion in the spatial circular restricted three-body problem: a semi-analytical argument. Physica D 334, 29 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. Efthymiopoulos, C.: Canonical perturbation theory, stability and diffusion in Hamiltonian systems: applications in dynamical astronomy. In: Cincotta, P.M., Giordano, C. M., Efthymiopoulos, C. (eds.) Third La Plata International School on Astronomy and Geophysics: Chaos, Diffusion and Non-integrability in Hamiltonian Systems Applications to Astronomy (2012)Google Scholar
  26. Efthymiopoulos, C., Harsoula, M.: The speed of Arnold diffusion. Physica D 251, 19–38 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. Efthymiopoulos, C., Contopoulos, G., Voglis, N.: Cantori islands and asymptotic curves in the stickiness region. Celest. Mech. Dyn. Astron. 73, 221–230 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. Féjoz, J., Guàrdia, M., Kaloshin, V., Roldán, P.: Kirkwood gaps and diffusion along mean motion resonances in the restricted planar three-body problem. J. Eur. Math. Soc. 18, 2315 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Froeschlé, C., Lega, E.: On the structure of symplectic mappings. The fast Lyapunov indicator: a very sensitive tool. Celest. Mech. Dyn. Astron. 78, 167–195 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. Froeschlé, C., Guzzo, M., Lega, E.: Local and global diffusion along resonant lines in discrete quasi-integrable dynamical systems. Celest. Mech. Dyn. Astron. 92, 243 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. Froeschlé, C., Lega, E., Guzzo, M.: Analysis of the chaotic behaviour of orbits diffusing along the Arnold web. Celest. Mech. Dyn. Astron. 95, 141 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. Gayon, J., Marzari, F., Scholl, H.: Stable chaos in the 55Cnc exoplanetary system? Mon. Notices R. Astron. Soc. 389, L1–L3 (2008)ADSCrossRefGoogle Scholar
  33. Giordano, C.M., Cincotta, P.M.: The Shannon entropy as a measure of diffusion in multidimensional dynamical systems. Celest. Mech. Dyn. Astron. (2017) (submitted)Google Scholar
  34. Giorgilli, A.: New insights on the stability problem from recent results in classical perturbation theory. In: Benest, D., Froeschlé, C. (eds.) Les Methodes Modernes de la Mecanique Celeste, vol. 249. Frontières (1990)Google Scholar
  35. Guzzo, M., Lega, E., Froechlé, C.: First numerical evidence of global Arnold diffusion in quasi-integrable systems. Discrete Contin. Dyn. Syst. B 5, 687 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  36. Guzzo, M., Lega, E., Froeshlé, C.: First numerical investigation of a conjecture by N. N. Nekhoroshev about stability in quasi-integrable systems. Chaos 21, 033101 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. Hadjidemetriou, J.D.: Resonant periodic motion and the stability of extrasolar planetary systems. Celest. Mech. Dyn. Astron. 83, 141 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. Izrailev, F.M., Chirikov, B.V.: Stochasticity of a simple dynamical model with divided phase space, Preprint N\(^{\circ }\) 191. Institute of Nuclear Physics, Novosibirsk (1968) (in Russian)Google Scholar
  39. Kley, W., Lee, M.H., Murray, N., Peale, S.: Modeling the resonant planetary system GJ 876. J. Astron. Astrophys. 437, 727 (2005)ADSCrossRefGoogle Scholar
  40. Laughlin, G., Chambers, J.E.: Short-term dynamical interactions among extrasolar planets. Astrophys. J. 551, L109 (2001)ADSCrossRefGoogle Scholar
  41. Laskar, J.: The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones. Icarus 88, 266 (1990)ADSCrossRefGoogle Scholar
  42. Lega, E., Guzzo, M., Froeschlé, C.: Detection of Arnold diffusion in Hamiltonian systems. Physica D 182, 179 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. Lega, E., Froeschlé, C., Guzzo, M.: Diffusion in Hamiltonian quasi-integrable systems. Lect. Notes Phys. 729, 29 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. Lochak, P.: Arnold diffusion; a compendium of remark and questions. In: Simó, C. (ed.) Hamiltonian Systems with Three or More Degrees of Freedom, NATO ASI Series C, vol. 533. Kluwer, Dordrecht (1999)Google Scholar
  45. Maffione, N.P., Gómez, F.A., Cincotta, P.M., Giordano, C.M., Cooper, A.P., O’Shea, B.W.: On the relevance of chaos for halo stars in the Solar Neighbourhood. Mon. Notices R. Astron. Soc. 453, 2830 (2015)ADSCrossRefGoogle Scholar
  46. Marcy, G., Butler, R., Vogt, S., Fischer, D., Lissauer, J.: A planetary companion to a nearby M4 Dwarf, Gliese 876. Astrophys. J. 505, L147 (1998)ADSCrossRefGoogle Scholar
  47. Martí, J.G., Giuppone, C.A., Beaugé, C.: Dynamical analysis of the Gliese-876 Laplace resonance. Mon. Notices R. Astron. Soc. 433, 928 (2013)ADSCrossRefGoogle Scholar
  48. Martí, J.G., Cincotta, P.M., Beaugé, C.: Chaotic diffusion in the Gliese-876 planetary system. Mon. Notices R. Astron. Soc. 460, 1094 (2016). (MCB16)ADSCrossRefGoogle Scholar
  49. Meiss, J.D.: Symplectic maps, variational principles, and transport. Rev. Mod. Phys. 64, 795 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. Merritt, D., Friedman, T.: Triaxial galaxies with cusps. Astrophys. J. 460, 136 (1996)ADSCrossRefGoogle Scholar
  51. Merritt, D., Valluri, M.: Chaos and mixing in triaxial stellar systems. Astrophys. J. 471, 82 (1996)ADSCrossRefGoogle Scholar
  52. Miguel, N., Simó, C., Vieiro, A.: On the effect of islands in the diffusive properties of the standard map, for large parameter values. Found. Comput. Math. 15, 89 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  53. Milani, A., Nobili, A.M.: An example of stable chaos in the solar system. Nature 357, 569 (1992)ADSCrossRefGoogle Scholar
  54. Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russ. Math. Surv. 32, 1 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  55. Nelson, B.E., Robertson, P., Pritchard, S.: An empirically derived three-dimensional Laplace resonance in the GJ 876 planetary system. IAU Gen. Assem. 22, 2258089 (2015)ADSGoogle Scholar
  56. Papaphilippou, Y., Laskar, J.: Global dynamics of triaxial galactic models through frequency map analysis. Astron. Astrophys. 329, 451 (1998)ADSGoogle Scholar
  57. Rivera, E.J., Lissauer, J.J.: Stability analysis of the planetary system orbiting \(\upsilon \) andromedae. Astrophys. J. 530, 454 (2000)ADSCrossRefGoogle Scholar
  58. Rivera, E., Laughlin, G., Butler, R., Vogt, S., Haghighipour, N., Meschiari, S.: The Lick-Carnegie exoplanet survey: a Uranus-Mass fourth planet for GJ 876 in an extrasolar Laplace configuration. Astrophys. J. 719, 890 (2010)ADSCrossRefGoogle Scholar
  59. Simó, C.: Global dynamics and fast indicators. In: Broer, H.W., Krauskopf, B., Vegter, G. (eds.) Global Analysis of Dynamical Systems, pp. 373–390. IOP Publishing, Bristol (2001)Google Scholar
  60. Tsiganis, K.: Chaotic diffusion of asteroids. Lect. Notes Phys. 729, 111 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. Tsiganis, K., Varvoglis, H., Dvorak, R.: Chaotic diffusion and effective stability of Jupiter Trojans. Celest. Mech. Dyn. Astron. 92, 71 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. Varvoglis, H.: Chaos, random walks and diffusion in Hamiltonian systems. In: Benest, D., Froeschlé, C., Lega, E. (eds.) Hamiltonian systems and Fourier Analysis, vol. 247. Cambridge Scientific Publishers (2005)Google Scholar
  63. Venegeroles, R.: Calculation of superdiffusion for the Chirikov–Taylor model. Phys. Rev. Lett. 101, 054102 (2008)ADSCrossRefGoogle Scholar
  64. Wisdom, J.: The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. Astron. J. 85, 1122 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo de Caos en Sistemas Hamiltonianos, Facultad de Ciencias Astonómicas y GeofísicasUniversidad Nacional de La Plata and Instituto de Astrofísica de La Plata (CONICET-UNLP)La PlataArgentina
  2. 2.Instituto de Astronomía Teórica y Experimental (IATE), Observatorio AstronómicoUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations