Skip to main content
Log in

The Synergistic Effect of Hydroxylated Carbon Nanotubes and Ultrasound Treatment on Hierarchical HZSM-5 in the Selective Catalytic Upgrading of Biomass Derived Glycerol to Aromatics

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work studied the synergistic effect of carbon nanotubes (CNT) contents, ultrasound treatment and compatibility between the aluminosilicate precursors and CNT templates on the selective catalytic upgrading of biomass derived glycerol to aromatics (GTA) over hierarchical HZSM-5. The hydroxylation treatment of CNT templates led to a higher crystallinity of synthesized HZSM-5, whereas the ultrasonic aging decreased the crystal size of prepared HZSM-5. The appropriate increase of CNT-OH addition in HZSM-5 precursors caused a shift of GTA reaction pathway from liquid route to gas route. The fabricated hierarchical 15%CNT-OH/HZSM-5/Sono sample showed nearly 2 times higher in BTX yield (27.4 C%) and 2.5 times longer in catalyst lifetime (8.5 h) compared to the microporous HZSM-5 (14.1 C% of BTX aromatics yield and 3.5 h lifetime) due to the synergistic effect among the CNT-OH addition, ultrasound treatment and precursor affinity during the hierarchical HZSM-5 synthesis, which provided more active sites and inlets of pore mouths entrances to HZSM-5 interiors as well as accelerated diffusion and shortened diffusion path length for the GTA procedure. However, both microporous and hierarchical HZSM-5 exhibited irreversible catalyst deactivation caused by the irreversible dealumination of the HZSM-5 framework during the reaction-regeneration cycle.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Che Q, Yang M, Wang X, Yang Q, Williams LR, Yang H, Zou J, Zeng K, Zhu Y, Chen Y, Chen H (2019) Bioresour Technol 278:248–254

    Article  PubMed  CAS  Google Scholar 

  2. Sirous-Rezaei P, Jae J, Cho K, Ko CH, Jung S-C, Park Y-K (2019) Chem Eng J 377

  3. Niziolek AM, Onel O, Guzman YA, Floudas CA (2016) Energ Fuel 30:4970–4998

    Article  CAS  Google Scholar 

  4. Jin F, Zhang P, Wu G (2021) Chem Eng Sci 229

  5. Monteiro MR, Kugelmeier CL, Pinheiro RS, Batalha MO, Cesar ADS (2018) Renew Sustain Energy Rev 88:109–122

    Article  CAS  Google Scholar 

  6. Kostyniuk A, Bajec D, Likozar B (2020) Green Chem 22:753–765

    Article  CAS  Google Scholar 

  7. Kostyniuk A, Bajec D, Djinovic P, Likozar B (2020) Chem Eng J 397

  8. Kostyniuk A, Bajec D, Djinovic P, Likozar B (2020) Chem Eng J 394

  9. Samudrala SP, Kandasamy S, Bhattacharya S (2018) Sci Rep-Uk 8

  10. Li XK, Zhang YG (2016) Acs Catal 6:143–150

    Article  CAS  Google Scholar 

  11. He SB, Goldhoorn HR, Tegudeer Z, Chandel A, Heeres A, Liu CC, Pidko E, Heeres HJ (2021) Fuel Process Technol 221

  12. Kostyniuk A, Bajec D, Likozar B (2021) J Ind Eng Chem 96:130–143

    Article  CAS  Google Scholar 

  13. Hoang TQ, Zhu XL, Danuthai T, Lobban LL, Resasco DE, Mallinson RG (2010) Energ Fuel 24:3804–3809

    Article  CAS  Google Scholar 

  14. Jang HS, Bae K, Shin M, Kim SM, Kim CU, Suh YW (2014) Fuel 134:439–447

    Article  CAS  Google Scholar 

  15. Tamiyakul S, Ubolcharoen W, Tungasmita DN, Jongpatiwut S (2015) Catal Today 256:325–335

    Article  CAS  Google Scholar 

  16. Xiao Y, Varma A (2016) ACS Energy Lett 1:963–968

    Article  CAS  Google Scholar 

  17. Austin D, Wang A, He P, Qian H, Zeng H, Song H (2018) Fuel 216:218–226

    Article  CAS  Google Scholar 

  18. He S, Zuur K, Santosa DS, Heeres A, Liu C, Pidko E, Heeres HJ (2021) Appl Catal B-Environ 281

  19. Wang F, Chu XZ, Zhu FX, Li QQ, Wu FY, Liu BH (2018) Energy Technol-Ger 6:2238–2246

    Article  CAS  Google Scholar 

  20. Pan DH, Xu SQ, Miao YA, Xu NN, Wang HZ, Song XH, Gao LJ, Xiao GM (2019) Catal Sci Technol 9:739–752

    Article  CAS  Google Scholar 

  21. Shin M, Kim T, Suh YW (2017) Top Catal 60:658–665

    Article  CAS  Google Scholar 

  22. Nishu, Liu R, Rahman MM, Sarker M, Chai M, Li C, Cai J (2020) Fuel Process Technol 199

  23. Wang F, Zhou MX, Yang XH, Gao LJ, Xiao GM (2017) Mol Catals 432:144–154

    Article  CAS  Google Scholar 

  24. Xiao WY, Wang F, Xiao GM (2015) Rsc Adv 5:63697–63704

    Article  CAS  Google Scholar 

  25. Yang X, Wang F, Wei R, Li S, Wu Y, Shen P, Wang H, Gao L, Xiao G (2018) Micropor Mesopor Mat 257:154–161

    Article  CAS  Google Scholar 

  26. Wang F, Chu X, Zhu F, Wu F, Li Q, Liu B, Xiao G (2019) Micropor Mesopor Mat 277:286–294

    Article  CAS  Google Scholar 

  27. Wang F, Chu X, Zhao P, Zhu F, Li Q, Wu F, Xiao G (2020) Fuel 262

  28. Hu DX, Hu HL, Jin HT, Zhang PL, Hu YH, Ying SH, Li XM, Yang Y, Zhang J, Wang L (2020) Appl Catal a-Gen 590

  29. Zhang C, Kwak G, Lee YJ, Jun KW, Gao R, Park HG, Kim S, Min JE, Kang SC, Guan GF (2019) Micropor Mesopor Mat 284:316–326

    Article  CAS  Google Scholar 

  30. Wang XY, Zhang XW, Wang QF (2019) Ind Eng Chem Res 58:8495–8505

    Article  CAS  Google Scholar 

  31. Ottaviani D, Van-Dunem V, Carvalho AP, Martins A, Martins L (2020) Catal Today 348:37–44

    Article  CAS  Google Scholar 

  32. Verboekend D, Chabaneix AM, Thomas K, Gilson JP, Perez-Ramirez J (2011) CrystEngComm 13:3408–3416

    Article  CAS  Google Scholar 

  33. Mi XT, Hou ZG, Li XG, Liu HT, Guo XW (2020) Micropor Mesopor Mat 302

  34. Guo YP, Wang HJ, Guo YJ, Guo LH, Chu LF, Guo CX (2011) Chem Eng J 166:391–400

    Article  CAS  Google Scholar 

  35. Meng XJ, Xiao FS (2014) Chem Rev 114:1521–1543

    Article  PubMed  CAS  Google Scholar 

  36. Li Y, Sun H, Wang Y, Xu B, Yan Z (2015) Progress Chem 27:503–510

    CAS  Google Scholar 

  37. Dong XL, Shaikh S, Vittenet JR, Wang JJ, Liu ZH, Bhatte KD, Ali O, Xu W, Osorio I, Saih Y, Basset JM, Ali SA, Han Y (2018) Acs Sustain Chem Eng 6:15832–15840

    Article  CAS  Google Scholar 

  38. Zahara Z, Krisnandi YK, Wibowo W, Nurani DA, Rahayu DUC, Haerudin H (2018) Synthesis and characterization of hierarchical ZSM-5 zeolite using various templates as cracking catalysts. In: Mart T, Triyono D, Anggraningrum IT, Sugeng KA, Yuniati R (Eds.), Proceedings of the 3rd International Symposium on Current Progress in Mathematics and Sciences 2017

  39. Tian QW, Liu ZH, Zhu YH, Dong XL, Saih Y, Basset JM, Sun M, Xu W, Zhu LK, Zhang DL, Huang JF, Meng XJ, Xiao FS, Han Y (2016) Adv Funct Mater 26:1881–1891

    Article  CAS  Google Scholar 

  40. Che QF, Yang MJ, Wang XH, Yang Q, Chen YQ, Chen X, Chen W, Hu JH, Zeng K, Yang HP, Chen HP (2019) Bioresource Technol 289

  41. Sabarish R, Unnikrishnan G (2019) Sn Appl Sci 1

  42. Zhang LC, Sun XB, Pan M, Yang XN, Liu YC, Sun JH, Wang QH, Zheng JJ, Wang Y, Ma JH, Li WL, Li RF (2020) J Mater Sci 55:10412–10426

    Article  CAS  Google Scholar 

  43. Cho HJ, Dornath P, Fan W (2014) Acs Catal 4:2029–2037

    Article  CAS  Google Scholar 

  44. Zhang Z, Cao GP, Cai Q, Lu H, Ji S, Fang R, Gao P, Feng M (2020) Ind Eng Chem Res 59:2761–2772

    Article  CAS  Google Scholar 

  45. Zhao SF, Wang WD, Wang LZ, Schwieger W, Wang W, Huang J (2020) Acs Catal 10:1185–1194

    Article  CAS  Google Scholar 

  46. Saenluang K, Imyen T, Wannapakdee W, Suttipat D, Dugkhuntod P, Ketkaew M, Thivasasith A, Wattanakit C (2020) Acs Applied Nano Materials 3:3252–3263

    Article  CAS  Google Scholar 

  47. Ferracine EDD, Carvalho KTG, Silva DSA, Urquieta-Gonzalez EA (2020) Catal Lett 150:3481–3494

    Article  CAS  Google Scholar 

  48. Shokrani R, Haghighi M (2020) Appl Catal B-Environ 271

  49. Khoshbin R, Oruji S, Karimzadeh R (2018) Adv Powder Technol 29:2176–2187

    Article  CAS  Google Scholar 

  50. Oulton R, Haase JP, Kaalberg S, Redmond CT, Nalbandian MJ, Cwiertny DM (2015) Environ Sci Technol 49:3687–3697

    Article  PubMed  CAS  Google Scholar 

  51. Gao GD, Pan ML, Vecitis CD (2015) J Mater Chem A 3:7575–7582

    Article  CAS  Google Scholar 

  52. Chae S, Ji BG, Kim A, Choi E, Kwon SH, Zheng L, Kang K, Nam M, Paik T, Kim KS, Pyo SG (2017) J Nanosci Nanotechno 17:3496–3499

    Article  CAS  Google Scholar 

  53. Aldahri T, Behin J, Kazemian H, Rohani S (2016) Fuel 182:494–501

    Article  CAS  Google Scholar 

  54. Askari S, Alipour SM, Halladj R, Farahani MHDA (2013) J Porous Mat 20:285–302

    Article  CAS  Google Scholar 

  55. Khoshbin R, Karimzadeh R (2017) Adv Powder Technol 28:973–982

    Article  CAS  Google Scholar 

  56. Azarhoosh MJ, Halladj R, Askari S (2017) Res Chem Intermed 43:3265–3282

    Article  CAS  Google Scholar 

  57. Oruji S, Khoshbin R, Karimzadeh R (2018) Fuel Process Technol 176:283–295

    Article  CAS  Google Scholar 

  58. Imyen T, Wannapakdee W, Limtrakul J, Wattanakit C (2019) Fuel 254

  59. Neves TM, Fernandes JO, Liao LM, da Silva ED, da Rosa CA, Mortola VB (2019) Micropor Mesopor Mat 275:244–252

    Article  CAS  Google Scholar 

  60. Varzaneh AZ, Towfighi J, Sahebdelfar S, Bahrami H (2016) J Anal Appl Pyrol 121:11–23

    Article  CAS  Google Scholar 

  61. Wang X, Chen HB, Meng FJ, Gao F, Sun C, Sun LY, Wang SH, Wang L, Wang YQ (2017) Micropor Mesopor Mat 243:271–280

    Article  CAS  Google Scholar 

  62. Wu T, Li S-J, Yuan G-M, Zhao D-J, Chen S-I, Xu J, Hua T-Y (2018) Fuel Process Technol 173:143–152

    Article  CAS  Google Scholar 

  63. Guo S, Wang S, Zhang L, Qin Z, Wang P, Dong M, Wang J, Fan W (2021) Chem J Chinese U 42:227–238

    Google Scholar 

  64. Lezcano-Gonzalez I, Campbell E, Hoffman AEJ, Bocus M, Sazanovich IV, Towrie M, Agote-Aran M, Gibson EK, Greenaway A, De Wispelaere K, Van Speybroeck V, Beale AM (2020) Nat Mater 19:1081

    Article  PubMed  CAS  Google Scholar 

  65. Yun D, Yun YS, Kim TY, Park H, Lee JM, Han JW, Yi J (2016) J Catal 341:33–43

    Article  CAS  Google Scholar 

  66. Palizdar A, Sadrameli SM (2020) Renew Energ 148:674–688

    Article  CAS  Google Scholar 

  67. Lin X, Kong L, Ren X, Zhang D, Cai H, Lei H (2021) Renew Energ 164:87–95

    Article  CAS  Google Scholar 

  68. Wang DR, Sun HM, Liu W, Shen ZH, Yang WM (2020) Front Chem Sci Eng 14:248–257

    Article  CAS  Google Scholar 

  69. Xu N, Pan D, Wu Y, Xu S, Gao L, Zhang J, Xiao G (2019) React Kinet Mech Cat 127:449–467

    Article  CAS  Google Scholar 

  70. He S, Muizebelt I, Heeres A, Schenk NJ, Blees R, Heeres HJ (2018) Appl Catal B-Environ 235:45–55

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from Natural Science foundation of Huai’an City (HABZ201702), Natural Science Foundation of Jiangsu Universities (17KJD530001, 19KJA150009), Program of Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials (JSKC17006), Natural Science Foundation of Jiangsu Province (BK20181069), National Natural Science Foundation of China (51872109, 21808076).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Wang or Xiaozhong Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5368 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Li, Q., Chu, X. et al. The Synergistic Effect of Hydroxylated Carbon Nanotubes and Ultrasound Treatment on Hierarchical HZSM-5 in the Selective Catalytic Upgrading of Biomass Derived Glycerol to Aromatics. Catal Lett 152, 2421–2433 (2022). https://doi.org/10.1007/s10562-021-03823-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03823-1

Keywords

Navigation