Skip to main content
Log in

Synthesis of hierarchical SAPO-34 catalysts modified with manganese nanoparticles for conversion of methanol to light olefins: a deactivation and regeneration study

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The hierarchical type 34 silicoaluminophosphate (SAPO-34) catalysts containing manganese were synthesized in the presence of carbon nanotube as mesopore template and tested in the transformation of methanol to light olefin. Also, the regenerability of spent catalysts after methanol to olefins (MTO) reaction was studied. In order to investigate the effect of manganese on the framework and extra framework of SAPO-34 structure, manganese species were added to SAPO-34 by isomorphous substitution and impregnation methods. The physicochemical properties of modified hierarchical samples such as crystallinity, acidity, porosity and reducibility were strongly dependent on the metal addition method. The modified hierarchical samples showed superior performance in the terms of activity and longevity compared to unmodified hierarchical SAPO-34. Among the samples, hierarchical MnAPSO-34 catalyst prepared by isomorphous substitution exhibited the best performance in the MTO reaction. The characterization of the used hierarchical catalysts by TGA analysis revealed that the deposited coke on modified samples was lower compared to unmodified hierarchical SAPO-34. The regenerated modified hierarchical SAPO-34 samples showed more enhanced ethylene selectivity in the MTO reaction and longer lifetime due to the existence of more methylated naphthalenes and methylated benzenes in the residual coke after regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sena FC, de Souza BF, de Almeida NC, Cardoso JS, Fernandes LD (2011) Appl Catal A 406:59–62

    Article  CAS  Google Scholar 

  2. Fan W, Li R, Dou T, Tatsumi T, Weckhuysen BM (2005) Microporous Mesoporous Mater 84:116–126

    Article  CAS  Google Scholar 

  3. Iton LE, Choi I, Desjardins JA, Maroni VA (1989) Zeolites 9:535–538

    Article  CAS  Google Scholar 

  4. Ghalbi-Ahangari M, Ranjbar PR, Rashidi A, Teymuri M (2017) Reac Kinet Mech Cat 122:1265–1279

    Article  CAS  Google Scholar 

  5. Sun Y, Ge L, Zhou J, Zhang J, Xu ZP, Qian G (2014) J Clean Prod 78:249–253

    Article  CAS  Google Scholar 

  6. Sheldon RA, Dakka J (1994) Catal Today 19:215–245

    Article  CAS  Google Scholar 

  7. Shao H, Yao J, Ke X, Zhang L, Xu N (2009) Mater Res Bull 44:956–959

    Article  CAS  Google Scholar 

  8. Jhung SH, Lee J-H, Yoon JW, Hwang J-S, Park S-E, Chang J-S (2005) Microporous Mesoporous Mater 80:147–152

    Article  CAS  Google Scholar 

  9. Mériaudeau P, Tuan VA, Hung LN, Lefebvre F, Nguyen HP (1997) J Chem Soc Faraday Trans 93:4201–4206

    Article  Google Scholar 

  10. Chen J, Thomas JM (1994) J Chem Soc Chem Commun 5:603–604

    Article  Google Scholar 

  11. Xi D, Sun Q, Xu J, Cho M, Cho HS, Asahina S, Li Y, Deng F, Terasaki O, Yu J (2014) J Mater Chem A 2:17994–18004

    Article  CAS  Google Scholar 

  12. Sun Q, Wang N, Xi D, Yang M, Yu J (2014) Chem Commun 50:6502–6505

    Article  CAS  Google Scholar 

  13. Sharifi Pajaie H, Taghizadeh M (2016) Reac Kinet Mech Cat 118:701–717

    Article  CAS  Google Scholar 

  14. Gharibi Kharaji A, Beheshti M, Repke J-U, Tangestani-nejad S, Görke O, Godini HR (2019) Reac Kinet Mech Cat 127:375–390

    Article  CAS  Google Scholar 

  15. Ong LH, Dömök M, Olindo R, van Veen AC, Lercher JA (2012) Microporous Mesoporous Mater 164:9–20

    Article  CAS  Google Scholar 

  16. Groen JC, Moulijn JA, Pérez-Ramírez J (2007) Ind Eng Chem Res 46:4193–4201

    Article  CAS  Google Scholar 

  17. Wu L, Degirmenci V, Magusin PCMM, Szyja BM, Hensen EJM (2012) Chem Commun 48:9492–9494

    Article  CAS  Google Scholar 

  18. Koo J-B, Jiang N, Saravanamurugan S, Bejblová M, Musilová Z, Čejka J, Park S-E (2010) J Catal 276:327–334

    Article  CAS  Google Scholar 

  19. Egeblad K, Kustova M, Klitgaard SK, Zhu K, Christensen CH (2007) Microporous Mesoporous Mater 101:214–223

    Article  CAS  Google Scholar 

  20. Wei X, Smirniotis PG (2006) Microporous Mesoporous Mater 89:170–178

    Article  CAS  Google Scholar 

  21. Varzaneh AZ, Towfighi J, Sahebdelfar S (2016) Microporous Mesoporous Mater 236:1–12

    Article  CAS  Google Scholar 

  22. Varzaneh AZ, Towfighi J, Sahebdelfar S, Bahrami H (2016) J Anal Appl Pyrol 121:11–23

    Article  CAS  Google Scholar 

  23. Kang M (2000) J Mol Catal A 160:437–444

    Article  CAS  Google Scholar 

  24. Wei Y, Zhang D, Xu L, Chang F, He Y, Meng S, Su BL, Liu Z (2008) Catal Today 131:262–269

    Article  CAS  Google Scholar 

  25. Sadeghpour P, Haghighi M (2015) Particuology 19:69–81

    Article  CAS  Google Scholar 

  26. Varzaneh AZ, Towfighi J, Mohamadalizadeh A (2014) J Anal Appl Pyrol 107:165–173

    Article  CAS  Google Scholar 

  27. Hadi N, Niaei A, Nabavi SR, Navaei Shirazi M, Alizadeh R (2015) J Ind Eng Chem 29:52–62

    Article  CAS  Google Scholar 

  28. Phung TK, Radikapratama R, Garbarino G, Lagazzo A, Riani P, Busca G (2015) Fuel Process Technol 137:290–297

    Article  CAS  Google Scholar 

  29. Varzaneh AZ, Kootenaei AHS, Towfighi J, Mohamadalizadeh A (2013) J Anal Appl Pyrol 102:144–153

    Article  CAS  Google Scholar 

  30. Serrano DP, Escola JM, Pizarro P (2013) Chem Soc Rev 42:4004–4035

    Article  CAS  PubMed  Google Scholar 

  31. Zakaria ZY, Linnekoski J, Amin NAS (2012) Chem Eng J 207–208:803–813

    Article  CAS  Google Scholar 

  32. Wang P, Lv A, Hu J, Xu J, Lu G (2012) Microporous Mesoporous Mater 152:178–184

    Article  CAS  Google Scholar 

  33. Jhung SH, Lee JH, Chang J-S (2008) Microporous Mesoporous Mater 112:178–186

    Article  CAS  Google Scholar 

  34. Aghaei E, Haghighi M, Pazhohniya Z, Aghamohammadi S (2016) Microporous Mesoporous Mater 226:331–343

    Article  CAS  Google Scholar 

  35. Perego G, Millini R, Bellussi G (1998) Synthesis187-228

  36. Meng Y, Genuino HC, Kuo C-H, Huang H, Chen S-Y, Zhang L, Rossi A, Suib SL (2013) J Am Chem Soc 135:8594–8605

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Q, Wang Y, Itsuki S, Shishido T, Takehira K (2002) J Mol Catal A 188:189–200

    Article  CAS  Google Scholar 

  38. Xia H, Liu B, Li Q, Huang Z, Cheung AS-C (2017) Appl Catal B 200:552–565

    Article  CAS  Google Scholar 

  39. Wasalathanthri ND, SantaMaria TM, Kriz DA, Dissanayake SL, Kuo C-H, Biswas S, Suib SL (2017) Appl Catal B 201:543–551

    Article  CAS  Google Scholar 

  40. Qiu Y, Wang L, Zhang X, Liu G (2015) RSC Adv 5:78238–78246

    Article  CAS  Google Scholar 

  41. Zhang L, van Laak AN, de Jongh PE, de Jong KP (2010) Synth Mech Cryst Growth Nucl 1:237–282

    CAS  Google Scholar 

  42. Wang P, Yang D, Hu J, Xu J, Lu G (2013) Catal Today 212:62.e1–62.e8

    CAS  Google Scholar 

  43. Zhu Z, Hartmann M, Kevan L (2000) Chem Mater 12:2781–2787

    Article  CAS  Google Scholar 

  44. Park JW, Kim SJ, Seo M, Kim SY, Sugi Y, Seo G (2008) Appl Catal A 349:76–85

    Article  CAS  Google Scholar 

  45. Varzaneh AZ, Towfighi J, Kootenaei AHS, Mohamadalizadeh A (2015) Reac Kinet Mech Cat 115:719–740

    Article  CAS  Google Scholar 

  46. Chen D, Moljord K, Fuglerud T, Holmen A (1999) Microporous Mesoporous Mater 29:191–203

    Article  CAS  Google Scholar 

  47. Bulánek R, Kalužová A, Setnička M, Zukal A, Čičmanec P, Mayerová J (2012) Catal Today 179:149–158

    Article  CAS  Google Scholar 

  48. Sun Q, Wang N, Guo G, Chen X, Yu J (2015) J Mater Chem A 3:19783–19789

    Article  CAS  Google Scholar 

  49. Dai W, Wu G, Li L, Guan N, Hunger M (2013) ACS Cataly 3:588–596

    Article  CAS  Google Scholar 

  50. Zhou J, Zhang J, Zhi Y, Zhao J, Zhang T, Ye M, Liu Z (2018) Ind Eng Chem Res 57:17338–17347

    Article  CAS  Google Scholar 

  51. Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2014) Appl Catal A 472:72–79

    Article  CAS  Google Scholar 

  52. Wu X, Abraha MG, Anthony RG (2004) Appl Catal A 260:63–69

    Article  CAS  Google Scholar 

  53. Qi L, Li J, Wei Y, Xu L, Liu Z (2016) Catal Sci Technol 6:3737–3744

    Article  CAS  Google Scholar 

  54. Song W, Fu H, Haw JF (2001) J Phys Chem B 105:12839–12843

    Article  CAS  Google Scholar 

  55. Borodina E, Kamaluddin SH, Meirer F, Mokhtar M, Asiri AM, Al-Thabaiti SA, Basahel SN, Ruiz-Martinez J, Weckhuysen BM (2017) ACS Catal 7:5268–5281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Song W, Fu H, Haw JF (2001) J Am Chem Soc 123:4749–4754

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from Chemical Engineering Center of Excellence at Tarbiat Modares University is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Saei Moghaddam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeinali Varzaneh, A., Towfighi, J. & Saei Moghaddam, M. Synthesis of hierarchical SAPO-34 catalysts modified with manganese nanoparticles for conversion of methanol to light olefins: a deactivation and regeneration study. Reac Kinet Mech Cat 128, 1043–1063 (2019). https://doi.org/10.1007/s11144-019-01665-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01665-y

Keywords

Navigation