Skip to main content
Log in

Carbon-Templated Mesopores in HZSM-5 Zeolites: Effect on Cyclohexane Cracking

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Intracrystalline mesoporosity in HZSM-5 zeolites was generated using carbon nanoparticles as template. The activity of the resulting zeolites was evaluated for the ring opening and cracking of cyclohexane. The zeolites with mesopores showed smaller particle sizes and a decrease of the amount of medium and strong acid sites, which involved a decrease of Brønsted nature. Despite their lower acidity, the mesoporous zeolites exhibited higher activity. The mesoporous zeolite with the lowest acidity also showed the lowest activity, evidencing that generation of mesoporosity must be carefully tuned in order to preserve the intrinsic zeolitic properties. Increase of the mesoporosity led to increased selectivity towards more valuable light olefins, consequently decreasing the selectivity towards C3 and C4 saturated hydrocarbons. Smaller particle sizes and mesopores improved the products diffusion, decreasing the contact time and the oligomerization and bimolecular hydrogen transfer reactions, which were also disfavored by the decrease of the acid sites concentration.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li K, Valla J, Garcia-Martinez J (2014) Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. ChemCatChem 6:46–66. https://doi.org/10.1002/cctc.201300345

    Article  CAS  Google Scholar 

  2. Moller K, Bein T (2013) Mesoporosity—a new dimension for zeolites. Chem Soc Rev 42:3689–3707. https://doi.org/10.1039/c3cs35488a

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Yu J (2014) New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem Rev 114:7268–7316. https://doi.org/10.1021/cr500010r

    Article  CAS  PubMed  Google Scholar 

  4. Vogt ETC, Weckhuysen BM (2015) Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem Soc Rev 44:7342–7370. https://doi.org/10.1039/C5CS00376H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Čejka J, Wichterlová B (2002) Acid-catalyzed synthesis of mono- and dialkyl benzenes over zeolites: active sites, zeolite topology, and reaction mechanisms. Catal Rev Sci Eng 44:375–421. https://doi.org/10.1081/CR-120005741

    Article  Google Scholar 

  6. Zhao X, Roberie TG (1999) ZSM-5 Additive in fluid catalytic cracking. 1. Effect of additive level and temperature on light olefins and gasoline olefins. Ind Eng Chem Res 38:3847–3853. https://doi.org/10.1021/ie990179q

    Article  CAS  Google Scholar 

  7. Degnan TF, Chitnis GK, Schipper PH (2000) History of ZSM-5 fluidized-bed cracking catalysts development at Mobil. Microporous Mesoporous Mater 35–36:245–252. https://doi.org/10.1016/S1387-1811(99)00225-5

    Article  Google Scholar 

  8. Alipour SM (2016) Recent advances in naphtha catalytic cracking by nano ZSM-5: a review. Chin J Catal 37:671–680. https://doi.org/10.1016/S1872-2067

    Article  Google Scholar 

  9. Rahimi N, Karimzadeh R (2011) Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Appl Catal A 398:1–17. https://doi.org/10.1016/j.apcata.2011.03.009

    Article  CAS  Google Scholar 

  10. Zhu J, Meng X, Xiao F (2013) Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Front Chem Sci Eng 7:233–248. https://doi.org/10.1007/s11705-013-1329-2

    Article  CAS  Google Scholar 

  11. Zhou J, Liu Z, Wang Y et al (2014) Enhanced accessibility and utilization efficiency of acid sites in hierarchical MFI zeolite catalyst for effective diffusivity improvement. RSC Adv 4:43752–43755. https://doi.org/10.1039/C4RA03986F

    Article  CAS  Google Scholar 

  12. Serrano DP, Aguado J, Escola JM (2011) Hierarchical zeolites: materials with improved accessibility and enhanced catalytic activity. Catalysis 23:253–283

    Article  CAS  Google Scholar 

  13. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2420. https://doi.org/10.1021/cr960406n

    Article  CAS  PubMed  Google Scholar 

  14. Hartmann M, Machoke AG, Schwieger W (2016) Catalytic test reactions for the evaluation of hierarchical zeolites. Chem Soc Rev 45:3313–3330. https://doi.org/10.1039/c5cs00935a

    Article  CAS  PubMed  Google Scholar 

  15. Shi J, Wang Y, Yang W et al (2015) Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chem Soc Rev 44:8877–8903. https://doi.org/10.1039/C5CS00626K

    Article  CAS  PubMed  Google Scholar 

  16. Christensen CH, Johannsen K, Tornqvist E et al (2007) Mesoporous zeolite single crystal catalysts: diffusion and catalysis in hierarchical zeolites. Catal Today 128:117–122. https://doi.org/10.1016/j.cattod.2007.06.082

    Article  CAS  Google Scholar 

  17. Chen L, Li X, Rooke JC et al (2012) Hierarchically structured zeolites: synthesis, mass transport properties and applications. J Mater Chem 22:17381–17403. https://doi.org/10.1039/c2jm31957h

    Article  CAS  Google Scholar 

  18. Wei Y, Parmentier TE, de Jong KP, Zečević J (2015) Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem Soc Rev 44:7234–7261. https://doi.org/10.1039/c5cs00155b

    Article  CAS  PubMed  Google Scholar 

  19. Serrano DP, Escola JM, Pizarro P (2013) Synthesis strategies in the search for hierarchical zeolites. Chem Soc Rev 42:4004–4035. https://doi.org/10.1039/c2cs35330j

    Article  CAS  PubMed  Google Scholar 

  20. Tempelman CHL, Zhu X, Gudun K et al (2015) Texture, acidity and fluid catalytic cracking performance of hierarchical faujasite zeolite prepared by an amphiphilic organosilane. Fuel Process Technol 139:248–258. https://doi.org/10.1016/j.fuproc.2015.06.025

    Article  CAS  Google Scholar 

  21. Odedairo T, Balasamy RJ, Al-Khattaf S (2011) Influence of mesoporous materials containing ZSM-5 on alkylation and cracking reactions. J Mol Catal A 345:21–36. https://doi.org/10.1016/j.molcata.2011.05.015

    Article  CAS  Google Scholar 

  22. Tang T, Fu W, Zhang L et al (2016) Mesoporous zeolite ZSM-5 supported Ni2P catalysts with high activity in the hydrogenation of phenanthrene and 4,6-dimethyldibenzothiophene. Ind Eng Chem Res 55:7085–7095. https://doi.org/10.1021/acs.iecr.6b01583

    Article  CAS  Google Scholar 

  23. Sun Y, Prins R (2008) Hydrodesulfurization of 4,6-dimethyldibenzothiophene over noble metals supported on mesoporous zeolites. Angew Chemie Int Ed 47:8478–8481. https://doi.org/10.1002/anie.200802540

    Article  CAS  Google Scholar 

  24. Chu N, Yang J, Li C et al (2009) An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization. Microporous Mesoporous Mater 118:169–175. https://doi.org/10.1016/j.micromeso.2008.08.048

    Article  CAS  Google Scholar 

  25. Rutkowska M, Macina D, Piwowarska Z et al (2016) Hierarchically structured ZSM-5 obtained by optimized mesotemplate-free method as active catalyst for methanol to DME conversion. Catal Sci Technol 6:4849–4862. https://doi.org/10.1039/C6CY00040A

    Article  CAS  Google Scholar 

  26. Cui T-L, Lv L-B, Zhang W-B et al (2011) Programmable synthesis of mesoporous ZSM-5 nanocrystals as selective and stable catalysts for the methanol-to-propylene process. Catal Sci Technol 6:5262–5266. https://doi.org/10.1039/c0cy00003e

    Article  CAS  Google Scholar 

  27. Wang Q, Xu S, Chen J et al (2014) Synthesis of mesoporous ZSM-5 catalysts using different mesogenous templates and their application in methanol conversion for enhanced catalyst lifespan. RSC Adv 4:21479–21491. https://doi.org/10.1039/C4RA02695K

    Article  CAS  Google Scholar 

  28. Yan Y, Guo X, Zhang Y, Tang Y (2015) Future of nano-/hierarchical zeolites in catalysis: gaseous phase or liquid phase system. Catal Sci Technol 5:772–785. https://doi.org/10.1039/c4cy01114g

    Article  CAS  Google Scholar 

  29. Wei Y, Chang F, He Y et al (2007) Creating mesopores in ZSM-5 for improving catalytic cracking of hydrocarbons. Stud Surf Sci Catal 165:539–542. https://doi.org/10.1016/S0167-2991(07)80379-X

    Article  CAS  Google Scholar 

  30. Venuto PB, Habib ET (1978) Catalyst-feedstock-engineering interactions in fluid catalytic cracking. Catal Rev Sci Eng 18:1–150. https://doi.org/10.1080/03602457808067529

    Article  CAS  Google Scholar 

  31. Abbot J (1990) Active sites and intermediates for isomerization and cracking of cyclohexane on HY. J Catal 123:383–395. https://doi.org/10.1016/0021-9517(90)90137-9

    Article  CAS  Google Scholar 

  32. Ardakani SJ, Smith KJ (2011) A comparative study of ring opening of naphthalene, tetralin and decalin over Mo2C/HY and Pd/HY catalysts. Appl Catal A 403:36–47. https://doi.org/10.1016/j.apcata.2011.06.013

    Article  CAS  Google Scholar 

  33. Konno H, Tago T, Nakasaka Y et al (2013) Effectiveness of nano-scale ZSM-5 zeolite and its deactivation mechanism on catalytic cracking of representative hydrocarbons of naphtha. Microporous Mesoporous Mater 175:25–33. https://doi.org/10.1016/j.micromeso.2013.03.016

    Article  CAS  Google Scholar 

  34. Slagtern Å, Dahl IM, Jens KJ, Myrstad T (2010) Cracking of cyclohexane by high Si HZSM-5. Appl Catal A Gen 375:213–221. https://doi.org/10.1016/j.apcata.2009.12.032

    Article  CAS  Google Scholar 

  35. Onyestyák G, Pál-Borbély G, Beyer HK (2002) Cyclohexane conversion over H-zeolite supported platinum. Appl Catal A 229:65–74. https://doi.org/10.1016/S0926-860X(02)00016-9

    Article  Google Scholar 

  36. Moraes R, Thomas K, Thomas S et al (2012) Ring opening of decalin and methylcyclohexane over alumina-based monofunctional WO3/Al2O3 and Ir/Al2O3 catalysts. J Catal 286:62–77. https://doi.org/10.1016/j.jcat.2011.10.014

    Article  CAS  Google Scholar 

  37. Calemma V, Ferrari M, Rabl S, Weitkamp J (2013) Selective ring opening of naphthenes: from mechanistic studies with a model feed to the upgrading of a hydrotreated light cycle oil. Fuel 111:763–770. https://doi.org/10.1016/j.fuel.2013.04.055

    Article  CAS  Google Scholar 

  38. Carvalho KTG, Urquieta-Gonzalez EA (2015) Microporous-mesoporous ZSM-12 zeolites: synthesis by using a soft template and textural, acid and catalytic properties. Catal Today 243:92–102. https://doi.org/10.1016/j.cattod.2014.09.025

    Article  CAS  Google Scholar 

  39. Ngoye F, Lakiss L, Qin Z et al (2014) Mitigating coking during methylcyclohexane transformation on HZSM-5 zeolites with additional porosity. J Catal 320:118–126. https://doi.org/10.1016/j.jcat.2014.10.001

    Article  CAS  Google Scholar 

  40. Van BR, Reyniers M-F, Martens JA, Marin GB (2010) Catalytic cracking of methylcyclohexane on FAU, MFI, and bimodal porous materials: influence of acid properties and pore topology. Ind Eng Chem Res 49:10486–10495. https://doi.org/10.1021/ie100429u

    Article  CAS  Google Scholar 

  41. Na K, Choi M, Ryoo R (2013) Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous Mesoporous Mater 166:3–19. https://doi.org/10.1016/j.micromeso.2012.03.054

    Article  CAS  Google Scholar 

  42. Vernimmen J, Meynen V, Cool P (2011) Synthesis and catalytic applications of combined zeolitic/mesoporous materials. Beilstein J Nanotechnol 2:785–801. https://doi.org/10.3762/bjnano.2.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Groen JC, Moulijn JA, Pérez-Ramírez J (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Phys Chem 16:2121–2131. https://doi.org/10.1039/B517510K

    Article  CAS  Google Scholar 

  44. Silaghi M-CC, Chizallet C, Raybaud P (2014) Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous Mesoporous Mater 191:82–96. https://doi.org/10.1016/j.micromeso.2014.02.040

    Article  CAS  Google Scholar 

  45. González MD, Cesteros Y, Salagre P (2011) Comparison of dealumination of zeolites beta, mordenite and ZSM-5 by treatment with acid under microwave irradiation. Microporous Mesoporous Mater 144:162–170. https://doi.org/10.1016/j.micromeso.2011.04.009

    Article  CAS  Google Scholar 

  46. Kühl G (1998) Source materials for zeolite synthesis. Microporous Mesoporous Mater 22:515–516. https://doi.org/10.1016/S1387-1811(98)00133-4

    Article  Google Scholar 

  47. Pavlačková Z, Košová G, Silková N et al (2006) Formation of mesopores in ZSM-5 by carbon templating. Stud Surf Sci Catal 162:905–912. https://doi.org/10.1016/S0167-2991(06)80996-1

    Article  Google Scholar 

  48. Mintova S (2016) Verified syntheses of zeolitic materials, 3rd rev. ed. XRD Patterns: Barrier N. Published on behalf of the the Synthesis Commission of the International Zeolite Association, p 410. ISBN: 978-0-692-68539-6

  49. ASTM D5758–01(2015) Standard test method for determination of relative crystallinity of zeolite ZSM-5 by X-ray diffraction. ASTM Int, West Conshohocken. 10.1520/D5758-01R15

  50. Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86–748, p 231

  51. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213. https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  52. Ruthven DM (2001) Characterization of zeolites by sorption capacity measurements. Verif Synth Zeolitic Mater. https://doi.org/10.1016/B978-044450703-7/50111-3

    Article  Google Scholar 

  53. Lippens BC, de Boer JH (1965) Studies on pore systems in catalysts: V The t method. J Catal 4:319–323. https://doi.org/10.1016/0021-9517(65)90307-6

    Article  CAS  Google Scholar 

  54. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  55. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  56. Carvalho KTG, Araújo Silva DS, Urquieta-Gonzalez EA (2019) Generation of 3D-intracrystalline diffusion structures from a 1D/12MR HZSM-12 zeolite: improvements in the catalytic stability. Ind Eng Chem Res 58:7044–7051. https://doi.org/10.1021/acs.iecr.9b00697

    Article  CAS  Google Scholar 

  57. Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354. https://doi.org/10.1006/jcat.1993.1145

    Article  CAS  Google Scholar 

  58. Han S, Wang Z, Meng L, Jiang N (2016) Synthesis of uniform mesoporous ZSM-5 using hydrophilic carbon as a hard template. Mater Chem Phys J 177:112–117. https://doi.org/10.1016/j.matchemphys.2016.04.003

    Article  CAS  Google Scholar 

  59. Koo JB, Jiang N, Saravanamurugan S et al (2010) Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating. J Catal 276:327–334. https://doi.org/10.1016/j.jcat.2010.09.024

    Article  CAS  Google Scholar 

  60. Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 54:2201–2218. https://doi.org/10.1351/pac198254112201

    Article  Google Scholar 

  61. Ravikovitch PI, Neimark AV (2002) Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation. Langmuir 18:9830–9837. https://doi.org/10.1021/la026140z

    Article  CAS  Google Scholar 

  62. Groen JC, Peffer LAA, Pérez-Ramı́rez J (2003) Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60:1–17. https://doi.org/10.1016/S1387-1811(03)00339-1

    Article  CAS  Google Scholar 

  63. Jacobsen CJH, Madsen C, Houzvicka J et al (2000) Mesoporous zeolite single crystals. J Am Chem Soc 122:7116–7117. https://doi.org/10.1021/ja000744c

    Article  CAS  Google Scholar 

  64. Zhang Y, Zhu K, Zhou X, Yuan W (2014) Synthesis of hierarchically porous ZSM-5 zeolites by steam-assisted crystallization of dry gels silanized with short-chain organosilanes. New J Chem 38:5808–5816. https://doi.org/10.1039/C4NJ00811A

    Article  CAS  Google Scholar 

  65. Konno H, Ohnaka R, Nishimura J et al (2014) Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: effect of reduced crystal size on the reaction of naphthenes. Catal Sci Technol 4:4265–4273. https://doi.org/10.1039/C4CY00733F

    Article  CAS  Google Scholar 

  66. Schmidt I, Madsen C, Jacobsen CJH (2000) Confined space synthesis. a novel route to nanosized zeolites. Inorg Chem 39:2279–2283. https://doi.org/10.1021/ic991280q

    Article  CAS  PubMed  Google Scholar 

  67. Brown SH (2010) Zeolites in catalysis. Handb Green Chem. https://doi.org/10.1002/9783527628698.hgc013

    Article  Google Scholar 

  68. Kamimura Y, Iyoki K, Palani S et al (2012) OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous Mesoporous Mater 163:282–290. https://doi.org/10.1016/j.micromeso.2012.07.014

    Article  CAS  Google Scholar 

  69. Katada N, Suzuki K, Noda T et al (2009) Correlation between Brønsted acid strength and local structure in zeolites. J Phys Chem C 113:19208–19217. https://doi.org/10.1021/jp903788n

    Article  CAS  Google Scholar 

  70. Bevilacqua M, Alejandre AG, Resini C et al (2002) An FTIR study of the accessibility of the protonic sites of H-mordenites. Phys Chem Chem Phys 4:4575–4583. https://doi.org/10.1039/b201886a

    Article  CAS  Google Scholar 

  71. Abelló S, Bonilla A, Pérez-Ramírez J (2009) Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching. Appl Catal A 364:191–198. https://doi.org/10.1016/j.apcata.2009.05.055

    Article  CAS  Google Scholar 

  72. Sadowska K, Wach A, Olejniczak Z et al (2013) Hierarchic zeolites: zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous Mesoporous Mater 167:82–88. https://doi.org/10.1016/j.micromeso.2012.03.045

    Article  CAS  Google Scholar 

  73. Tzoulaki D, Jentys A, Pérez-Ramírez J et al (2012) On the location, strength and accessibility of Brønsted acid sites in hierarchical ZSM-5 particles. Catal Today 198:3–11. https://doi.org/10.1016/j.cattod.2012.03.078

    Article  CAS  Google Scholar 

  74. Holm MS, Svelle S, Joensen F et al (2009) Assessing the acid properties of desilicated ZSM-5 by FTIR using CO and 2,4,6-trimethylpyridine (collidine) as molecular probes. Appl Catal A 356:23–30. https://doi.org/10.1016/j.apcata.2008.11.033

    Article  CAS  Google Scholar 

  75. Mitchell S, Boltz M, Liu J, Pérez-Ramírez J (2017) Engineering of ZSM-5 zeolite crystals for enhanced lifetime in the production of light olefins via 2-methyl-2-butene cracking. Catal Sci Technol 7:64–74. https://doi.org/10.1039/c6cy01009a

    Article  CAS  Google Scholar 

  76. Baerlocher Ch, McCusker LB, Olson DH. Atlas of Zeolite Framework Types. 6th rev. ed. Amsterdam: Elsevier; 2007. 405 p. ISBN: 978-0-444-53064-6

  77. Čejka J, Peréz-Pariente J, Roth WJ (2008) Zeolites: from model materials to industrial catalysts. Trivandrum: Transworld Research Network, p 422. ISBN: 9788178953304

  78. Raichle A, Traa Y, Fuder F et al (2001) Haag-Dessau catalysts for ring opening of cycloalkanes. Angew Chemie Int Ed 40:1243–1246. https://doi.org/10.1002/1521-3773(20010401)40:7%3c1243:AID-ANIE1243%3e3.0.CO;2-7

    Article  CAS  Google Scholar 

  79. Zhao D, Qiu S, Tang Y, Yu C (2009) Recent progress in mesostructured materials. Elsevier, Amsterdam, p 956 ISBN: 9780080475288

Download references

Acknowledgments

Financial support for this work was provided by the Brazilian funding agencies CAPES, CNPq, and FAPESP (Grant #2014/50249-8). The authors would also like to thank Prof. Tiago Venâncio (DQ/UFSCar) for providing the 27Al-MAS-NMR spectroscopy facilities, and the Laboratory of Structural Characterization (LCE/DEMa/UFSCar) for the energy dispersive X-ray fluorescence (EDXRF) and scanning electron microscopy (SEM) analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto A. Urquieta-Gonzalez.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Ferracine, E.D., Carvalho, K.T.G., Silva, D.S.A. et al. Carbon-Templated Mesopores in HZSM-5 Zeolites: Effect on Cyclohexane Cracking. Catal Lett 150, 3481–3494 (2020). https://doi.org/10.1007/s10562-020-03262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03262-4

Keywords

Navigation