Advertisement

Cancer and Metastasis Reviews

, Volume 33, Issue 2–3, pp 721–735 | Cite as

Mimicking breast cancer-induced bone metastasis in vivo: current transplantation models and advanced humanized strategies

  • Laure Thibaudeau
  • Verena M. Quent
  • Boris M. Holzapfel
  • Anna V. Taubenberger
  • Melanie Straub
  • Dietmar W. Hutmacher
NON-THEMATIC REVIEW

Abstract

Bone metastasis is a complication that occurs in 80 % of women with advanced breast cancer. Despite the prevalence of bone metastatic disease, the avenues for its clinical management are still restricted to palliative treatment options. In fact, the underlying mechanisms of breast cancer osteotropism have not yet been fully elucidated due to a lack of suitable in vivo models that are able to recapitulate the human disease. In this work, we review the current transplantation-based models to investigate breast cancer-induced bone metastasis and delineate the strengths and limitations of the use of different grafting techniques, tissue sources, and hosts. We further show that humanized xenograft models incorporating human cells or tissue grafts at the primary tumor site or the metastatic site mimic more closely the human disease. Tissue-engineered constructs are emerging as a reproducible alternative to recapitulate functional humanized tissues in these murine models. The development of advanced humanized animal models may provide better platforms to investigate the mutual interactions between human cancer cells and their microenvironment and ultimately improve the translation of preclinical drug trials to the clinic.

Keywords

Bone metastasis Breast cancer Osteotropism Humanized xenograft model Tissue engineering 

Notes

Acknowledgments

Some figures were produced using the image bank at www.servier.com with permission from Servier Medical Art. The work presented by the authors is supported by the Australian Research Council and the National Health and Medical Research Council. A.V.T. and B.M.H. are supported by the German Research Foundation (DFG HO 5068/1-1 to B.M.H.).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10555_2014_9499_MOESM1_ESM.pdf (158 kb)
ESM 1 (PDF 158 kb)
10555_2014_9499_MOESM2_ESM.pdf (111 kb)
ESM 2 (PDF 111 kb)
10555_2014_9499_MOESM3_ESM.pdf (71 kb)
ESM 3 (PDF 70.5 kb)
10555_2014_9499_MOESM4_ESM.pdf (69 kb)
ESM 4 (PDF 68.9 kb)

References

  1. 1.
    Siegel, R., Ma, J., Zou, Z., & Jemal, A. (2014). Cancer statistics, 2014. CA: A Cancer Journal for Clinicians, 64(1), 9–29. doi: 10.3322/caac.21208.Google Scholar
  2. 2.
    Coleman, R. E. (1997). Skeletal complications of malignancy. [Review]. Cancer, 80(8 Suppl), 1588–1594.PubMedCrossRefGoogle Scholar
  3. 3.
    Psaila, B., Kaplan, R. N., Port, E. R., & Lyden, D. (2006). Priming the 'soil' for breast cancer metastasis: the pre-metastatic niche. [Research Support, N.I.H., Extramural. Research Support, Non-U.S. Gov't. Review]. Breast Disease, 26, 65–74.PubMedGoogle Scholar
  4. 4.
    Yoneda, T., & Hiraga, T. (2005). Crosstalk between cancer cells and bone microenvironment in bone metastasis. [Review]. Biochemical and Biophysical Research Communications, 328(3), 679–687. doi: 10.1016/j.bbrc.2004.11.070.PubMedCrossRefGoogle Scholar
  5. 5.
    Kozlow, W., & Guise, T. A. (2005). Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. Journal of Mammary Gland Biology and Neoplasia, 10(2), 169–180.PubMedCrossRefGoogle Scholar
  6. 6.
    Buijs, J. T., & van der Pluijm, G. (2009). Osteotropic cancers: from primary tumor to bone. Cancer Letters, 273(2), 177–193. doi: 10.1016/j.canlet.2008.05.044.PubMedCrossRefGoogle Scholar
  7. 7.
    Brown, J. E., Neville-Webbe, H., & Coleman, R. E. (2004). The role of bisphosphonates in breast and prostate cancers. [Review]. Endocrine-Related Cancer, 11(2), 207–224.PubMedCrossRefGoogle Scholar
  8. 8.
    Kostenuik, P. J., Nguyen, H. Q., McCabe, J., Warmington, K. S., Kurahara, C., Sun, N., et al. (2009). Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL. Journal of Bone and Mineral Research, 24(2), 182–195. doi: 10.1359/jbmr.081112.PubMedCrossRefGoogle Scholar
  9. 9.
    Pearson, H., & Pouliot, N. (2012). Modeling Metastasis In Vivo. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience, Available from: http://www.ncbi.nlm.nih.gov/books/NBK100378/.
  10. 10.
    Khanna, C., & Hunter, K. (2005). Modeling metastasis in vivo. Carcinogenesis, 26(3), 513–523. doi: 10.1093/carcin/bgh261.PubMedCrossRefGoogle Scholar
  11. 11.
    Heppner, G. H., Dexter, D. L., DeNucci, T., Miller, F. R., & Calabresi, P. (1978). Heterogeneity in drug sensitivity among tumor cell subpopulations of a single mammary tumor. Cancer Research, 38(11 Part 1), 3758–3763.PubMedGoogle Scholar
  12. 12.
    Miller, F. R., & Heppner, G. H. (1979). Immunologic heterogeneity of tumor cell subpopulations from a single mouse mammary tumor. Journal of the National Cancer Institute, 63(6), 1457–1463. doi: 10.1093/jnci/63.6.1457.PubMedGoogle Scholar
  13. 13.
    Lelekakis, M., Moseley, J. M., Martin, T. J., Hards, D., Williams, E., Ho, P., et al. (1999). A novel orthotopic model of breast cancer metastasis to bone. Clinical and Experimental Metastasis, 17(2), 163–170. doi: 10.1023/a:1006689719505.PubMedCrossRefGoogle Scholar
  14. 14.
    Bolin, C., Sutherland, C., Tawara, K., Moselhy, J., & Jorcyk, C. (2012). Novel mouse mammary cell lines for in vivo bioluminescence imaging (BLI) of bone metastasis. Biological Procedures Online, 14(1), 6.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Sloan, E., Pouliot, N., Stanley, K., Chia, J., Moseley, J., Hards, D., et al. (2006). Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Research, 8(2), R20.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Song, H., Shahverdi, K., Huso, D. L., Wang, Y., Fox, J. J., Hobbs, R. F., et al. (2008). An immunotolerant HER-2/neu transgenic mouse model of metastatic breast cancer. Clinical Cancer Research, 14(19), 6116–6124. doi: 10.1158/1078-0432.ccr-07-4672.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., et al. (2007). A New model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical Cancer Research, 13(13), 3989–3998. doi: 10.1158/1078-0432.ccr-07-0078.PubMedCrossRefGoogle Scholar
  18. 18.
    Keller, P. J., Lin, A. F., Arendt, L. M., Klebba, I., Jones, A. D., Rudnick, J. A., et al. (2010). Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Research, 12(5), 21.CrossRefGoogle Scholar
  19. 19.
    DeNardo, D., Johansson, M., & Coussens, L. (2008). Immune cells as mediators of solid tumor metastasis. Cancer and Metastasis Reviews, 27(1), 11–18. doi: 10.1007/s10555-007-9100-0.PubMedCrossRefGoogle Scholar
  20. 20.
    Bidwell, B. N., Slaney, C. Y., Withana, N. P., Forster, S., Cao, Y., Loi, S., et al. (2012). Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med, 18(8), 1224-1231, doi: 10.1038/nm.2830 http://www.nature.com/nm/journal/v18/n8/abs/nm.2830.html#supplementary-information.
  21. 21.
    Tolcher, A. W., Sugarman, S., Gelmon, K. A., Cohen, R., Saleh, M., Isaacs, C., et al. (1999). Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. Journal of Clinical Oncology, 17(2), 478–484.PubMedGoogle Scholar
  22. 22.
    Kostenuik, P., Singh, G., Suyama, K., & Orr, F. W. (1992). A quantitative model for spontaneous bone metastasis: evidence for a mitogenic effect of bone on Walker 256 cancer cells. Clinical & Experimental Metastasis, 10(6), 403–410. doi: 10.1007/bf00133469.CrossRefGoogle Scholar
  23. 23.
    Kurth, A. H. A., Wang, C., Hayes, W. C., & Shea, M. (2001). The evaluation of a rat model for the analysis of densitometric and biomechanical properties of tumor-induced osteolysis. Journal of Orthopaedic Research, 19(2), 200–205. doi: 10.1016/s0736-0266(00)90014-7.PubMedCrossRefGoogle Scholar
  24. 24.
    Medhurst, S. J., Walker, K., Bowes, M., Kidd, B. L., Glatt, M., Muller, M., et al. (2002). A rat model of bone cancer pain. Pain, 96(1–2), 129–140. doi: 10.1016/s0304-3959(01)00437-7.PubMedCrossRefGoogle Scholar
  25. 25.
    Buijs, J. T., Henriquez, N. V., van Overveld, P. G. M., van der Horst, G., Que, I., Schwaninger, R., et al. (2007). Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer. Cancer Research, 67(18), 8742–8751. doi: 10.1158/0008-5472.can-06-2490.PubMedCrossRefGoogle Scholar
  26. 26.
    Yang, R.-S., Tang, C.-H., Chuang, W.-J., Huang, T.-H., Peng, H.-C., Huang, T.-F., et al. (2005). Inhibition of tumor formation by snake venom disintegrin. Toxicon, 45(5), 661–669. doi: 10.1016/j.toxicon.2005.01.013.PubMedCrossRefGoogle Scholar
  27. 27.
    Yoneda, T., Williams, P. J., Hiraga, T., Niewolna, M., & Nishimura, R. (2001). A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. Journal of Bone and Mineral Research, 16(8), 1486–1495. doi: 10.1359/jbmr.2001.16.8.1486.PubMedCrossRefGoogle Scholar
  28. 28.
    Ooi, L. L., Zhou, H., Kalak, R., Zheng, Y., Conigrave, A. D., Seibel, M. J., et al. (2010). Vitamin D deficiency promotes human breast cancer growth in a murine model of bone metastasis. Cancer Research, 70(5), 1835–1844. doi: 10.1158/0008-5472.can-09-3194.PubMedCrossRefGoogle Scholar
  29. 29.
    Ooi, L. L., Zheng, Y., Zhou, H., Trivedi, T., Conigrave, A. D., Seibel, M. J., et al. (2010). Vitamin D deficiency promotes growth of MCF-7 human breast cancer in a rodent model of osteosclerotic bone metastasis. Bone, 47(4), 795–803. doi: 10.1016/j.bone.2010.07.012.PubMedCrossRefGoogle Scholar
  30. 30.
    Cossigny, D., & Quan, G. Y. (2012). In vivo animal models of spinal metastasis. Cancer and Metastasis Reviews, 31(1–2), 99–108. doi: 10.1007/s10555-011-9332-x.PubMedCrossRefGoogle Scholar
  31. 31.
    Zibly, Z., Schlaff, C. D., Gordon, I., Munasinghe, J., & Camphausen, K. A. (2012). A novel rodent model of spinal metastasis and spinal cord compression. BMC Neuroscience, 13(137), 1471–2202.Google Scholar
  32. 32.
    Liang, H., Ma, S. Y., Mohammad, K., Guise, T. A., Balian, G., & Shen, F. H. (1976). The reaction of bone to tumor growth from human breast cancer cells in a rat spine single metastasis model. Spine, 36(7), 497–504.CrossRefGoogle Scholar
  33. 33.
    Nannuru, K., Futakuchi, M., Sadanandam, A., Wilson, T., Varney, M., Myers, K., et al. (2009). Enhanced expression and shedding of receptor activator of NF-κB ligand during tumor–bone interaction potentiates mammary tumor-induced osteolysis. Clinical & Experimental Metastasis, 26(7), 797–808. doi: 10.1007/s10585-009-9279-2.CrossRefGoogle Scholar
  34. 34.
    Neudert, M., Fischer, C., Krempien, B., Bauss, F., & Seibel, M. J. (2003). Site-specific human breast cancer (MDA-MB-231) metastases in nude rats: model characterisation and in vivo effects of ibandronate on tumour growth. International Journal of Cancer, 107(3), 468–477.CrossRefGoogle Scholar
  35. 35.
    Peyruchaud, O., Winding, B., Pecheur, I., Serre, C. M., Delmas, P., & Clezardin, P. (2001). Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. Journal of Bone and Mineral Research, 16(11), 2027–2034.PubMedCrossRefGoogle Scholar
  36. 36.
    Garcia, T., Jackson, A., Bachelier, R., Clément-Lacroix, P., Baron, R., Clézardin, P., et al. (2008). A convenient clinically relevant model of human breast cancer bone metastasis. Clinical & Experimental Metastasis, 25(1), 33–42. doi: 10.1007/s10585-007-9099-1.CrossRefGoogle Scholar
  37. 37.
    Paget, S. (1889). The distribution of secondary growths in cancer of the breast. The Lancet, 133(3421), 571–573.CrossRefGoogle Scholar
  38. 38.
    Powles, T. J., Clark, S. A., Easty, D. M., Easty, G. C., & Neville, A. M. (1973). The inhibition by aspirin and indomethacin of Osteolytic tumour deposits and hypercalcaemia in rats with Walker tumour, and its possible application to human breast cancer. British Journal of Cancer, 28(4), 316–321.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Halpern, J., Lynch, C. C., Fleming, J., Hamming, D., Martin, M. D., Schwartz, H. S., et al. (2006). The application of a murine bone bioreactor as a model of tumor: bone interaction. [Article]. Clinical & Experimental Metastasis, 23(7–8), 345–356. doi: 10.1007/s10585-006-9044-8.Google Scholar
  40. 40.
    Ono, K., Akatsu, T., Murakami, T., Kitamura, R., Yamamoto, M., Shinomiya, N., et al. (2002). Involvement of cyclo-oxygenase-2 in osteoclast formation and bone destruction in bone metastasis of mammary carcinoma cell lines. Journal of Bone and Mineral Research, 17(5), 774–781.PubMedCrossRefGoogle Scholar
  41. 41.
    Sasaki, A., Boyce, B. F., Story, B., Wright, K. R., Chapman, M., Boyce, R., et al. (1995). Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Research, 55(16), 3551–3557.PubMedGoogle Scholar
  42. 42.
    Yi, B., Williams, P. J., Niewolna, M., Wang, Y., & Yoneda, T. (2002). Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Research, 62(3), 917–923.PubMedGoogle Scholar
  43. 43.
    Eckhardt, B. L., Parker, B. S., van Laar, R. K., Restall, C. M., Natoli, A. L., Tavaria, M. D., et al. (2005). Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Molecular Cancer Research, 3(1), 1–13.PubMedGoogle Scholar
  44. 44.
    Kurebayashi, J., Nukatsuka, M., Fujioka, A., Saito, H., Takeda, S., Unemi, N., et al. (1997). Postsurgical oral administration of uracil and tegafur inhibits progression of micrometastasis of human breast cancer cells in nude mice. Clinical Cancer Research, 3(5), 653–659.PubMedGoogle Scholar
  45. 45.
    Ghajar, C. M., Peinado, H., Mori, H., Matei, I. R., Evason, K. J., Brazier, H., et al. (2013). The perivascular niche regulates breast tumour dormancy. Nature Cell Biology, 15(7), 807–817.PubMedCrossRefGoogle Scholar
  46. 46.
    DeRose, Y. S., Wang, G., Lin, Y.-C., Bernard, P. S., Buys, S. S., Ebbert, M. T. W., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med, 17(11), 1514-1520, doi: 10.1038/nm.2454 http://www.nature.com/nm/journal/v17/n11/abs/nm.2454.html#supplementary-information.
  47. 47.
    Hoffman, R. M. (1999). Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Investigational New Drugs, 17(4), 343–360. doi: 10.1023/a:1006326203858.PubMedCrossRefGoogle Scholar
  48. 48.
    Nanni, P., Nicoletti, G., Palladini, A., Croci, S., Murgo, A., Ianzano, M. L., et al. (2012). Multiorgan metastasis of human HER-2+ breast cancer in Rag2−/−;Il2rg−/− mice and treatment with PI3K inhibitor. PLoS ONE, 7(6), e39626. doi: 10.1371/journal.pone.0039626.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Shtivelman, E., & Namikawa, R. (1995). Species-specific metastasis of human tumor cells in the severe combined immunodeficiency mouse engrafted with human tissue. Proceedings of the National Academy of Sciences, 92(10), 4661–4665.CrossRefGoogle Scholar
  50. 50.
    Yonou, H., Yokose, T., Kamijo, T., Kanomata, N., Hasebe, T., Nagai, K., et al. (2001). Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized Non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Research, 61(5), 2177–2182.PubMedGoogle Scholar
  51. 51.
    Holzapfel, B. M., Thibaudeau, L., Hesami, P., Taubenberger, A., Holzapfel, N. P., Mayer-Wagner, S., et al. (2013). Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism. Cancer Metastasis Reviews. doi: 10.1007/s10555-013-9437-5.PubMedGoogle Scholar
  52. 52.
    Parmar, H., & Cunha, G. R. (2004). Epithelial-stromal interactions in the mouse and human mammary gland in vivo. Endocrine-Related Cancer, 11(3), 437–458.PubMedCrossRefGoogle Scholar
  53. 53.
    Olsen, C., Moreira, J., Lukanidin, E., & Ambartsumian, N. (2010). Human mammary fibroblasts stimulate invasion of breast cancer cells in a three-dimensional culture and increase stroma development in mouse xenografts. BMC Cancer, 10(1), 444.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121(3), 335–348. doi: 10.1016/j.cell.2005.02.034.PubMedCrossRefGoogle Scholar
  55. 55.
    Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 4966–4971. doi: 10.1073/pnas.0401064101.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Proia, D. A., & Kuperwasser, C. (2006). Reconstruction of human mammary tissues in a mouse model. Nature Protocols, 1(1), 206–214. doi: 10.1038/nprot.2006.31.PubMedCrossRefGoogle Scholar
  57. 57.
    Wu, M., Jung, L., Cooper, A. B., Fleet, C., Chen, L., Breault, L., et al. (2009). Dissecting genetic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.0811785106.Google Scholar
  58. 58.
    Wang, J., Xia, T.-S., Liu, X.-A., Ding, Q. D., Qing, Yin, H., & Wang, S. (2010). A novel orthotopic and metastatic mouse model of breast cancer in human mammary microenvironment. Breast Cancer Research and Treatment, 120, 337–344.PubMedCrossRefGoogle Scholar
  59. 59.
    Yang, W., Lam, P., Kitching, R., Kahn, H., Yee, A., Aubin, J. E., et al. (2007). Breast cancer metastasis in a human bone NOD/SCID mouse model. Cancer Biology & Therapy, 6(8), 1295–1300.CrossRefGoogle Scholar
  60. 60.
    Xia, T. S., Wang, J., Yin, H., Ding, Q., Zhang, Y. F., Yang, H. W., et al. (2010). Human tissue-specific microenvironment: an essential requirement for mouse models of breast cancer. Oncology Reports, 24(1), 203–211.PubMedGoogle Scholar
  61. 61.
    Ling, L. J., Wang, S., Liu, X. A., Shen, E. C., Ding, Q., Lu, C., et al. (2008). A novel mouse model of human breast cancer stem-like cells with high CD44 + CD24-/lower phenotype metastasis to human bone. Chinese Medical Journal, 121(20), 1980–1986.PubMedGoogle Scholar
  62. 62.
    Kuperwasser, C., Dessain, S., Bierbaum, B. E., Garnet, D., Sperandio, K., Gauvin, G. P., et al. (2005). A mouse model of human breast cancer metastasis to human bone. Cancer Research, 65(14), 6130–6138. doi: 10.1158/0008-5472.can-04-1408.PubMedCrossRefGoogle Scholar
  63. 63.
    Lam, P., Yang, W., Amemiya, Y., Kahn, H., Yee, A., Holloway, C., et al. (2009). A human bone NOD/SCID mouse model to distinguish metastatic potential in primary breast cancers. Cancer Biology & Therapy, 8(11), 1010–1017.CrossRefGoogle Scholar
  64. 64.
    Amemiya, Y., Yang, W., Benatar, T., Nofech-Mozes, S., Yee, A., Kahn, H., et al. (2011). Insulin like growth factor binding protein-7 reduces growth of human breast cancer cells and xenografted tumors. Breast Cancer Research and Treatment, 126(2), 373–384.PubMedCrossRefGoogle Scholar
  65. 65.
    Goldstein, R. H., Reagan, M. R., Anderson, K., Kaplan, D. L., & Rosenblatt, M. (2010). Human bone marrow–derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Research, 70(24), 10044–10050. doi: 10.1158/0008-5472.can-10-1254.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Liu, S., Goldstein, R. H., Scepansky, E. M., & Rosenblatt, M. (2009). Inhibition of Rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Research, 69(22), 8742–8751. doi: 10.1158/0008-5472.can-09-1541.PubMedCrossRefGoogle Scholar
  67. 67.
    Hutmacher, D. W. (2010). Biomaterials offer cancer research the third dimension. Nature Materials, 9(2), 90–93. doi: 10.1038/nmat2619.PubMedCrossRefGoogle Scholar
  68. 68.
    Vaquette, C., Ivanovski, S., Hamlet, S. M., & Hutmacher, D. W. (2013). Effect of culture conditions and calcium phosphate coating on ectopic bone formation. Biomaterials, 34(22), 5538–5551. doi: 10.1016/j.biomaterials.2013.03.088.PubMedCrossRefGoogle Scholar
  69. 69.
    Reichert, J. C., Quent, V. M., Noth, U., & Hutmacher, D. W. (2011). Ovine cortical osteoblasts outperform bone marrow cells in an ectopic bone assay. Journal of Tissue Engineering and Regenerative Medicine, 5(10), 831–844. doi: 10.1002/term.392.PubMedCrossRefGoogle Scholar
  70. 70.
    Moreau, J. E., Anderson, K., Mauney, J. R., Nguyen, T., Kaplan, D. L., & Rosenblatt, M. (2007). Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Research, 67(21), 10304–10308.PubMedCrossRefGoogle Scholar
  71. 71.
    Schuster, J., Zhang, J., & Longo, M. (2006). A novel human osteoblast-derived severe combined immunodeficiency mouse model of bone metastasis. Journal of Neurosurgery. Spine, 4(5), 388–391.PubMedCrossRefGoogle Scholar
  72. 72.
    Thibaudeau, L., Taubenberger, A. V., Holzapfel, B. M., Quent, V. M., Fuehrmann, T., Hesami, P., et al. (2014). A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Disease Models & Mechanisms, 7(2), 299–309. doi: 10.1242/dmm.014076.CrossRefGoogle Scholar
  73. 73.
    Hesami, P., Holzapfel, B. M., Taubenberger, A., Roudier, M., Fazli, L., Sieh, S., et al. (2014). A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone. Clinical and Experimental Metastasis. doi: 10.1007/s10585-014-9638-5.PubMedGoogle Scholar
  74. 74.
    Holzapfel, B. M., Wagner, F., Loessner, D., Holzapfel, N. P., Thibaudeau, L., Crawford, R., et al. (2014). Species-specific homing mechanisms of human prostate cancer metastasis in tissue engineered bone. Biomaterials. doi: 10.1016/j.biomaterials.2014.01.062.PubMedGoogle Scholar
  75. 75.
    Xia, T.-S., Wang, G.-Z., Ding, Q., Liu, X.-A., Zhou, W.-B., Zhang, Y.-F., et al. (2011). Bone metastasis in a novel breast cancer mouse model containing human breast and human bone. Breast Cancer Research and Treatment, 1-16, doi: 10.1007/s10549-011-1496-0

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Laure Thibaudeau
    • 1
  • Verena M. Quent
    • 2
  • Boris M. Holzapfel
    • 1
    • 3
  • Anna V. Taubenberger
    • 1
    • 4
  • Melanie Straub
    • 5
  • Dietmar W. Hutmacher
    • 1
    • 6
    • 7
  1. 1.Regenerative Medicine Group, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
  2. 2.Department of Obstetrics and GynecologyUniversity Hospital Erlangen, Friedrich-Alexander University Erlangen-NurembergErlangenGermany
  3. 3.Orthopedic Center for Musculoskeletal ResearchUniversity of WuerzburgWuerzburgGermany
  4. 4.Biotec TU DresdenDresdenGermany
  5. 5.Institute of Pathology, Technical University MunichMunichGermany
  6. 6.George W Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  7. 7.Institute for Advanced Study, Technical University MunichGarchingGermany

Personalised recommendations