Skip to main content

Advertisement

Log in

Mimicking breast cancer-induced bone metastasis in vivo: current transplantation models and advanced humanized strategies

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Bone metastasis is a complication that occurs in 80 % of women with advanced breast cancer. Despite the prevalence of bone metastatic disease, the avenues for its clinical management are still restricted to palliative treatment options. In fact, the underlying mechanisms of breast cancer osteotropism have not yet been fully elucidated due to a lack of suitable in vivo models that are able to recapitulate the human disease. In this work, we review the current transplantation-based models to investigate breast cancer-induced bone metastasis and delineate the strengths and limitations of the use of different grafting techniques, tissue sources, and hosts. We further show that humanized xenograft models incorporating human cells or tissue grafts at the primary tumor site or the metastatic site mimic more closely the human disease. Tissue-engineered constructs are emerging as a reproducible alternative to recapitulate functional humanized tissues in these murine models. The development of advanced humanized animal models may provide better platforms to investigate the mutual interactions between human cancer cells and their microenvironment and ultimately improve the translation of preclinical drug trials to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel, R., Ma, J., Zou, Z., & Jemal, A. (2014). Cancer statistics, 2014. CA: A Cancer Journal for Clinicians, 64(1), 9–29. doi:10.3322/caac.21208.

    Google Scholar 

  2. Coleman, R. E. (1997). Skeletal complications of malignancy. [Review]. Cancer, 80(8 Suppl), 1588–1594.

    Article  CAS  PubMed  Google Scholar 

  3. Psaila, B., Kaplan, R. N., Port, E. R., & Lyden, D. (2006). Priming the 'soil' for breast cancer metastasis: the pre-metastatic niche. [Research Support, N.I.H., Extramural. Research Support, Non-U.S. Gov't. Review]. Breast Disease, 26, 65–74.

    CAS  PubMed  Google Scholar 

  4. Yoneda, T., & Hiraga, T. (2005). Crosstalk between cancer cells and bone microenvironment in bone metastasis. [Review]. Biochemical and Biophysical Research Communications, 328(3), 679–687. doi:10.1016/j.bbrc.2004.11.070.

    Article  CAS  PubMed  Google Scholar 

  5. Kozlow, W., & Guise, T. A. (2005). Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. Journal of Mammary Gland Biology and Neoplasia, 10(2), 169–180.

    Article  PubMed  Google Scholar 

  6. Buijs, J. T., & van der Pluijm, G. (2009). Osteotropic cancers: from primary tumor to bone. Cancer Letters, 273(2), 177–193. doi:10.1016/j.canlet.2008.05.044.

    Article  CAS  PubMed  Google Scholar 

  7. Brown, J. E., Neville-Webbe, H., & Coleman, R. E. (2004). The role of bisphosphonates in breast and prostate cancers. [Review]. Endocrine-Related Cancer, 11(2), 207–224.

    Article  CAS  PubMed  Google Scholar 

  8. Kostenuik, P. J., Nguyen, H. Q., McCabe, J., Warmington, K. S., Kurahara, C., Sun, N., et al. (2009). Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL. Journal of Bone and Mineral Research, 24(2), 182–195. doi:10.1359/jbmr.081112.

    Article  CAS  PubMed  Google Scholar 

  9. Pearson, H., & Pouliot, N. (2012). Modeling Metastasis In Vivo. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience, Available from: http://www.ncbi.nlm.nih.gov/books/NBK100378/.

  10. Khanna, C., & Hunter, K. (2005). Modeling metastasis in vivo. Carcinogenesis, 26(3), 513–523. doi:10.1093/carcin/bgh261.

    Article  CAS  PubMed  Google Scholar 

  11. Heppner, G. H., Dexter, D. L., DeNucci, T., Miller, F. R., & Calabresi, P. (1978). Heterogeneity in drug sensitivity among tumor cell subpopulations of a single mammary tumor. Cancer Research, 38(11 Part 1), 3758–3763.

    CAS  PubMed  Google Scholar 

  12. Miller, F. R., & Heppner, G. H. (1979). Immunologic heterogeneity of tumor cell subpopulations from a single mouse mammary tumor. Journal of the National Cancer Institute, 63(6), 1457–1463. doi:10.1093/jnci/63.6.1457.

    CAS  PubMed  Google Scholar 

  13. Lelekakis, M., Moseley, J. M., Martin, T. J., Hards, D., Williams, E., Ho, P., et al. (1999). A novel orthotopic model of breast cancer metastasis to bone. Clinical and Experimental Metastasis, 17(2), 163–170. doi:10.1023/a:1006689719505.

    Article  CAS  PubMed  Google Scholar 

  14. Bolin, C., Sutherland, C., Tawara, K., Moselhy, J., & Jorcyk, C. (2012). Novel mouse mammary cell lines for in vivo bioluminescence imaging (BLI) of bone metastasis. Biological Procedures Online, 14(1), 6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sloan, E., Pouliot, N., Stanley, K., Chia, J., Moseley, J., Hards, D., et al. (2006). Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Research, 8(2), R20.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Song, H., Shahverdi, K., Huso, D. L., Wang, Y., Fox, J. J., Hobbs, R. F., et al. (2008). An immunotolerant HER-2/neu transgenic mouse model of metastatic breast cancer. Clinical Cancer Research, 14(19), 6116–6124. doi:10.1158/1078-0432.ccr-07-4672.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., et al. (2007). A New model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical Cancer Research, 13(13), 3989–3998. doi:10.1158/1078-0432.ccr-07-0078.

    Article  CAS  PubMed  Google Scholar 

  18. Keller, P. J., Lin, A. F., Arendt, L. M., Klebba, I., Jones, A. D., Rudnick, J. A., et al. (2010). Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Research, 12(5), 21.

    Article  Google Scholar 

  19. DeNardo, D., Johansson, M., & Coussens, L. (2008). Immune cells as mediators of solid tumor metastasis. Cancer and Metastasis Reviews, 27(1), 11–18. doi:10.1007/s10555-007-9100-0.

    Article  CAS  PubMed  Google Scholar 

  20. Bidwell, B. N., Slaney, C. Y., Withana, N. P., Forster, S., Cao, Y., Loi, S., et al. (2012). Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med, 18(8), 1224-1231, doi:10.1038/nm.2830 http://www.nature.com/nm/journal/v18/n8/abs/nm.2830.html#supplementary-information.

  21. Tolcher, A. W., Sugarman, S., Gelmon, K. A., Cohen, R., Saleh, M., Isaacs, C., et al. (1999). Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. Journal of Clinical Oncology, 17(2), 478–484.

    CAS  PubMed  Google Scholar 

  22. Kostenuik, P., Singh, G., Suyama, K., & Orr, F. W. (1992). A quantitative model for spontaneous bone metastasis: evidence for a mitogenic effect of bone on Walker 256 cancer cells. Clinical & Experimental Metastasis, 10(6), 403–410. doi:10.1007/bf00133469.

    Article  CAS  Google Scholar 

  23. Kurth, A. H. A., Wang, C., Hayes, W. C., & Shea, M. (2001). The evaluation of a rat model for the analysis of densitometric and biomechanical properties of tumor-induced osteolysis. Journal of Orthopaedic Research, 19(2), 200–205. doi:10.1016/s0736-0266(00)90014-7.

    Article  CAS  PubMed  Google Scholar 

  24. Medhurst, S. J., Walker, K., Bowes, M., Kidd, B. L., Glatt, M., Muller, M., et al. (2002). A rat model of bone cancer pain. Pain, 96(1–2), 129–140. doi:10.1016/s0304-3959(01)00437-7.

    Article  CAS  PubMed  Google Scholar 

  25. Buijs, J. T., Henriquez, N. V., van Overveld, P. G. M., van der Horst, G., Que, I., Schwaninger, R., et al. (2007). Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer. Cancer Research, 67(18), 8742–8751. doi:10.1158/0008-5472.can-06-2490.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, R.-S., Tang, C.-H., Chuang, W.-J., Huang, T.-H., Peng, H.-C., Huang, T.-F., et al. (2005). Inhibition of tumor formation by snake venom disintegrin. Toxicon, 45(5), 661–669. doi:10.1016/j.toxicon.2005.01.013.

    Article  CAS  PubMed  Google Scholar 

  27. Yoneda, T., Williams, P. J., Hiraga, T., Niewolna, M., & Nishimura, R. (2001). A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. Journal of Bone and Mineral Research, 16(8), 1486–1495. doi:10.1359/jbmr.2001.16.8.1486.

    Article  CAS  PubMed  Google Scholar 

  28. Ooi, L. L., Zhou, H., Kalak, R., Zheng, Y., Conigrave, A. D., Seibel, M. J., et al. (2010). Vitamin D deficiency promotes human breast cancer growth in a murine model of bone metastasis. Cancer Research, 70(5), 1835–1844. doi:10.1158/0008-5472.can-09-3194.

    Article  CAS  PubMed  Google Scholar 

  29. Ooi, L. L., Zheng, Y., Zhou, H., Trivedi, T., Conigrave, A. D., Seibel, M. J., et al. (2010). Vitamin D deficiency promotes growth of MCF-7 human breast cancer in a rodent model of osteosclerotic bone metastasis. Bone, 47(4), 795–803. doi:10.1016/j.bone.2010.07.012.

    Article  CAS  PubMed  Google Scholar 

  30. Cossigny, D., & Quan, G. Y. (2012). In vivo animal models of spinal metastasis. Cancer and Metastasis Reviews, 31(1–2), 99–108. doi:10.1007/s10555-011-9332-x.

    Article  PubMed  Google Scholar 

  31. Zibly, Z., Schlaff, C. D., Gordon, I., Munasinghe, J., & Camphausen, K. A. (2012). A novel rodent model of spinal metastasis and spinal cord compression. BMC Neuroscience, 13(137), 1471–2202.

    Google Scholar 

  32. Liang, H., Ma, S. Y., Mohammad, K., Guise, T. A., Balian, G., & Shen, F. H. (1976). The reaction of bone to tumor growth from human breast cancer cells in a rat spine single metastasis model. Spine, 36(7), 497–504.

    Article  Google Scholar 

  33. Nannuru, K., Futakuchi, M., Sadanandam, A., Wilson, T., Varney, M., Myers, K., et al. (2009). Enhanced expression and shedding of receptor activator of NF-κB ligand during tumor–bone interaction potentiates mammary tumor-induced osteolysis. Clinical & Experimental Metastasis, 26(7), 797–808. doi:10.1007/s10585-009-9279-2.

    Article  CAS  Google Scholar 

  34. Neudert, M., Fischer, C., Krempien, B., Bauss, F., & Seibel, M. J. (2003). Site-specific human breast cancer (MDA-MB-231) metastases in nude rats: model characterisation and in vivo effects of ibandronate on tumour growth. International Journal of Cancer, 107(3), 468–477.

    Article  CAS  Google Scholar 

  35. Peyruchaud, O., Winding, B., Pecheur, I., Serre, C. M., Delmas, P., & Clezardin, P. (2001). Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. Journal of Bone and Mineral Research, 16(11), 2027–2034.

    Article  CAS  PubMed  Google Scholar 

  36. Garcia, T., Jackson, A., Bachelier, R., Clément-Lacroix, P., Baron, R., Clézardin, P., et al. (2008). A convenient clinically relevant model of human breast cancer bone metastasis. Clinical & Experimental Metastasis, 25(1), 33–42. doi:10.1007/s10585-007-9099-1.

    Article  CAS  Google Scholar 

  37. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. The Lancet, 133(3421), 571–573.

    Article  Google Scholar 

  38. Powles, T. J., Clark, S. A., Easty, D. M., Easty, G. C., & Neville, A. M. (1973). The inhibition by aspirin and indomethacin of Osteolytic tumour deposits and hypercalcaemia in rats with Walker tumour, and its possible application to human breast cancer. British Journal of Cancer, 28(4), 316–321.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Halpern, J., Lynch, C. C., Fleming, J., Hamming, D., Martin, M. D., Schwartz, H. S., et al. (2006). The application of a murine bone bioreactor as a model of tumor: bone interaction. [Article]. Clinical & Experimental Metastasis, 23(7–8), 345–356. doi:10.1007/s10585-006-9044-8.

    Google Scholar 

  40. Ono, K., Akatsu, T., Murakami, T., Kitamura, R., Yamamoto, M., Shinomiya, N., et al. (2002). Involvement of cyclo-oxygenase-2 in osteoclast formation and bone destruction in bone metastasis of mammary carcinoma cell lines. Journal of Bone and Mineral Research, 17(5), 774–781.

    Article  CAS  PubMed  Google Scholar 

  41. Sasaki, A., Boyce, B. F., Story, B., Wright, K. R., Chapman, M., Boyce, R., et al. (1995). Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Research, 55(16), 3551–3557.

    CAS  PubMed  Google Scholar 

  42. Yi, B., Williams, P. J., Niewolna, M., Wang, Y., & Yoneda, T. (2002). Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Research, 62(3), 917–923.

    CAS  PubMed  Google Scholar 

  43. Eckhardt, B. L., Parker, B. S., van Laar, R. K., Restall, C. M., Natoli, A. L., Tavaria, M. D., et al. (2005). Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Molecular Cancer Research, 3(1), 1–13.

    CAS  PubMed  Google Scholar 

  44. Kurebayashi, J., Nukatsuka, M., Fujioka, A., Saito, H., Takeda, S., Unemi, N., et al. (1997). Postsurgical oral administration of uracil and tegafur inhibits progression of micrometastasis of human breast cancer cells in nude mice. Clinical Cancer Research, 3(5), 653–659.

    CAS  PubMed  Google Scholar 

  45. Ghajar, C. M., Peinado, H., Mori, H., Matei, I. R., Evason, K. J., Brazier, H., et al. (2013). The perivascular niche regulates breast tumour dormancy. Nature Cell Biology, 15(7), 807–817.

    Article  CAS  PubMed  Google Scholar 

  46. DeRose, Y. S., Wang, G., Lin, Y.-C., Bernard, P. S., Buys, S. S., Ebbert, M. T. W., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med, 17(11), 1514-1520, doi:10.1038/nm.2454 http://www.nature.com/nm/journal/v17/n11/abs/nm.2454.html#supplementary-information.

  47. Hoffman, R. M. (1999). Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Investigational New Drugs, 17(4), 343–360. doi:10.1023/a:1006326203858.

    Article  CAS  PubMed  Google Scholar 

  48. Nanni, P., Nicoletti, G., Palladini, A., Croci, S., Murgo, A., Ianzano, M. L., et al. (2012). Multiorgan metastasis of human HER-2+ breast cancer in Rag2−/−;Il2rg−/− mice and treatment with PI3K inhibitor. PLoS ONE, 7(6), e39626. doi:10.1371/journal.pone.0039626.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Shtivelman, E., & Namikawa, R. (1995). Species-specific metastasis of human tumor cells in the severe combined immunodeficiency mouse engrafted with human tissue. Proceedings of the National Academy of Sciences, 92(10), 4661–4665.

    Article  CAS  Google Scholar 

  50. Yonou, H., Yokose, T., Kamijo, T., Kanomata, N., Hasebe, T., Nagai, K., et al. (2001). Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized Non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Research, 61(5), 2177–2182.

    CAS  PubMed  Google Scholar 

  51. Holzapfel, B. M., Thibaudeau, L., Hesami, P., Taubenberger, A., Holzapfel, N. P., Mayer-Wagner, S., et al. (2013). Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism. Cancer Metastasis Reviews. doi:10.1007/s10555-013-9437-5.

    PubMed  Google Scholar 

  52. Parmar, H., & Cunha, G. R. (2004). Epithelial-stromal interactions in the mouse and human mammary gland in vivo. Endocrine-Related Cancer, 11(3), 437–458.

    Article  CAS  PubMed  Google Scholar 

  53. Olsen, C., Moreira, J., Lukanidin, E., & Ambartsumian, N. (2010). Human mammary fibroblasts stimulate invasion of breast cancer cells in a three-dimensional culture and increase stroma development in mouse xenografts. BMC Cancer, 10(1), 444.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121(3), 335–348. doi:10.1016/j.cell.2005.02.034.

    Article  CAS  PubMed  Google Scholar 

  55. Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 4966–4971. doi:10.1073/pnas.0401064101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Proia, D. A., & Kuperwasser, C. (2006). Reconstruction of human mammary tissues in a mouse model. Nature Protocols, 1(1), 206–214. doi:10.1038/nprot.2006.31.

    Article  CAS  PubMed  Google Scholar 

  57. Wu, M., Jung, L., Cooper, A. B., Fleet, C., Chen, L., Breault, L., et al. (2009). Dissecting genetic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.0811785106.

    Google Scholar 

  58. Wang, J., Xia, T.-S., Liu, X.-A., Ding, Q. D., Qing, Yin, H., & Wang, S. (2010). A novel orthotopic and metastatic mouse model of breast cancer in human mammary microenvironment. Breast Cancer Research and Treatment, 120, 337–344.

    Article  PubMed  Google Scholar 

  59. Yang, W., Lam, P., Kitching, R., Kahn, H., Yee, A., Aubin, J. E., et al. (2007). Breast cancer metastasis in a human bone NOD/SCID mouse model. Cancer Biology & Therapy, 6(8), 1295–1300.

    Article  Google Scholar 

  60. Xia, T. S., Wang, J., Yin, H., Ding, Q., Zhang, Y. F., Yang, H. W., et al. (2010). Human tissue-specific microenvironment: an essential requirement for mouse models of breast cancer. Oncology Reports, 24(1), 203–211.

    PubMed  Google Scholar 

  61. Ling, L. J., Wang, S., Liu, X. A., Shen, E. C., Ding, Q., Lu, C., et al. (2008). A novel mouse model of human breast cancer stem-like cells with high CD44 + CD24-/lower phenotype metastasis to human bone. Chinese Medical Journal, 121(20), 1980–1986.

    CAS  PubMed  Google Scholar 

  62. Kuperwasser, C., Dessain, S., Bierbaum, B. E., Garnet, D., Sperandio, K., Gauvin, G. P., et al. (2005). A mouse model of human breast cancer metastasis to human bone. Cancer Research, 65(14), 6130–6138. doi:10.1158/0008-5472.can-04-1408.

    Article  CAS  PubMed  Google Scholar 

  63. Lam, P., Yang, W., Amemiya, Y., Kahn, H., Yee, A., Holloway, C., et al. (2009). A human bone NOD/SCID mouse model to distinguish metastatic potential in primary breast cancers. Cancer Biology & Therapy, 8(11), 1010–1017.

    Article  Google Scholar 

  64. Amemiya, Y., Yang, W., Benatar, T., Nofech-Mozes, S., Yee, A., Kahn, H., et al. (2011). Insulin like growth factor binding protein-7 reduces growth of human breast cancer cells and xenografted tumors. Breast Cancer Research and Treatment, 126(2), 373–384.

    Article  CAS  PubMed  Google Scholar 

  65. Goldstein, R. H., Reagan, M. R., Anderson, K., Kaplan, D. L., & Rosenblatt, M. (2010). Human bone marrow–derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Research, 70(24), 10044–10050. doi:10.1158/0008-5472.can-10-1254.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Liu, S., Goldstein, R. H., Scepansky, E. M., & Rosenblatt, M. (2009). Inhibition of Rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Research, 69(22), 8742–8751. doi:10.1158/0008-5472.can-09-1541.

    Article  CAS  PubMed  Google Scholar 

  67. Hutmacher, D. W. (2010). Biomaterials offer cancer research the third dimension. Nature Materials, 9(2), 90–93. doi:10.1038/nmat2619.

    Article  CAS  PubMed  Google Scholar 

  68. Vaquette, C., Ivanovski, S., Hamlet, S. M., & Hutmacher, D. W. (2013). Effect of culture conditions and calcium phosphate coating on ectopic bone formation. Biomaterials, 34(22), 5538–5551. doi:10.1016/j.biomaterials.2013.03.088.

    Article  CAS  PubMed  Google Scholar 

  69. Reichert, J. C., Quent, V. M., Noth, U., & Hutmacher, D. W. (2011). Ovine cortical osteoblasts outperform bone marrow cells in an ectopic bone assay. Journal of Tissue Engineering and Regenerative Medicine, 5(10), 831–844. doi:10.1002/term.392.

    Article  CAS  PubMed  Google Scholar 

  70. Moreau, J. E., Anderson, K., Mauney, J. R., Nguyen, T., Kaplan, D. L., & Rosenblatt, M. (2007). Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Research, 67(21), 10304–10308.

    Article  CAS  PubMed  Google Scholar 

  71. Schuster, J., Zhang, J., & Longo, M. (2006). A novel human osteoblast-derived severe combined immunodeficiency mouse model of bone metastasis. Journal of Neurosurgery. Spine, 4(5), 388–391.

    Article  PubMed  Google Scholar 

  72. Thibaudeau, L., Taubenberger, A. V., Holzapfel, B. M., Quent, V. M., Fuehrmann, T., Hesami, P., et al. (2014). A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Disease Models & Mechanisms, 7(2), 299–309. doi:10.1242/dmm.014076.

    Article  Google Scholar 

  73. Hesami, P., Holzapfel, B. M., Taubenberger, A., Roudier, M., Fazli, L., Sieh, S., et al. (2014). A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone. Clinical and Experimental Metastasis. doi:10.1007/s10585-014-9638-5.

    PubMed  Google Scholar 

  74. Holzapfel, B. M., Wagner, F., Loessner, D., Holzapfel, N. P., Thibaudeau, L., Crawford, R., et al. (2014). Species-specific homing mechanisms of human prostate cancer metastasis in tissue engineered bone. Biomaterials. doi:10.1016/j.biomaterials.2014.01.062.

    PubMed  Google Scholar 

  75. Xia, T.-S., Wang, G.-Z., Ding, Q., Liu, X.-A., Zhou, W.-B., Zhang, Y.-F., et al. (2011). Bone metastasis in a novel breast cancer mouse model containing human breast and human bone. Breast Cancer Research and Treatment, 1-16, doi:10.1007/s10549-011-1496-0

Download references

Acknowledgments

Some figures were produced using the image bank at www.servier.com with permission from Servier Medical Art. The work presented by the authors is supported by the Australian Research Council and the National Health and Medical Research Council. A.V.T. and B.M.H. are supported by the German Research Foundation (DFG HO 5068/1-1 to B.M.H.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laure Thibaudeau or Dietmar W. Hutmacher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 158 kb)

ESM 2

(PDF 111 kb)

ESM 3

(PDF 70.5 kb)

ESM 4

(PDF 68.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thibaudeau, L., Quent, V.M., Holzapfel, B.M. et al. Mimicking breast cancer-induced bone metastasis in vivo: current transplantation models and advanced humanized strategies. Cancer Metastasis Rev 33, 721–735 (2014). https://doi.org/10.1007/s10555-014-9499-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9499-z

Keywords

Navigation