Skip to main content

Advertisement

Log in

Enhanced expression and shedding of receptor activator of NF-κB ligand during tumor–bone interaction potentiates mammary tumor-induced osteolysis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The bone microenvironment plays a critical role in tumor-induced osteolysis and osteolytic metastasis through tumor–bone (TB)-interaction. Receptor activator of nuclear factor-κB (RANK) ligand (RANKL) is one of the critical signaling molecules involved in osteolysis and bone metastasis. However, the regulation and functional significance of RANKL at the TB-interface in tumor-induced osteolysis remains unclear. In this report, we examined the role of tumor–stromal interaction in the regulation of RANKL expression and its functional significance in tumor-induced osteolysis. Using a novel mammary tumor model, we identified that RANKL expression was upregulated at the TB-interface as compared to the tumor alone area. We demonstrate increased generation of sRANKL at the TB-interface, which is associated with tumor-induced osteolysis. The ratio of RANKL to osteoprotegrin (OPG), a decoy receptor for RANKL, at the TB-interface was also increased. Targeting RANKL expression with antisense oligonucleotides (RANKL-ASO), significantly abrogated tumor-induced osteolysis, decreased RANKL expression and the RANKL:OPG ratio at the TB-interface. Together, these results demonstrate that upregulation of RANKL expression and sRANKL generation at the TB-interface potentiates tumor-induced osteolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96

    Article  PubMed  Google Scholar 

  2. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593

    Article  PubMed  CAS  Google Scholar 

  3. Boyce BF, Yoneda T, Guise TA (1999) Factors regulating the growth of metastatic cancer in bone. Endocr Relat Cancer 6(3):333–347

    Article  PubMed  CAS  Google Scholar 

  4. Coleman RE (1997) Skeletal complications of malignancy. Cancer 80(8 Suppl):1588–1594

    Article  PubMed  CAS  Google Scholar 

  5. Kakonen SM, Mundy GR (2003) Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer 97(3 Suppl):834–839

    Article  PubMed  Google Scholar 

  6. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664

    Article  PubMed  CAS  Google Scholar 

  7. Lacey DL, Tan HL, Lu J, Kaufman S, Van G, Qiu W et al (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157(2):435–448

    PubMed  CAS  Google Scholar 

  8. Dougall WC, Chaisson M (2006) The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev 25(4):541–549

    Article  PubMed  CAS  Google Scholar 

  9. Morrissey C, Kostenuik P, Brown L, Vessella R, Corey E (2007) Host-derived RANKL is responsible for osteolysis in a C4-2 human prostate cancer xenograft model of experimental bone metastases. BMC Cancer 7(1):148

    Article  PubMed  CAS  Google Scholar 

  10. Dallas SL, Rosser JL, Mundy GR, Bonewald LF (2002) Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem 277(24):21352–21360

    Article  PubMed  CAS  Google Scholar 

  11. Lacey DL, Timms E, Tan H-L, Kelley MJ, Dunstan CR, Burgess T et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176

    Article  PubMed  CAS  Google Scholar 

  12. Kitazawa S, Kitazawa R (2002) RANK ligand is a prerequisite for cancer-associated osteolytic lesions. J Pathol 198(2):228–236

    Article  PubMed  CAS  Google Scholar 

  13. Tanaka S, Nakamura K, Takahasi N, Suda T (2005) Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev 208:30–49

    Article  PubMed  CAS  Google Scholar 

  14. Roodman GD, Dougall WC (2008) RANK ligand as a therapeutic target for bone metastases and multiple myeloma. Cancer Treat Rev 34(1):92–101

    Article  PubMed  CAS  Google Scholar 

  15. Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C et al (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 107(10):1235–1244

    Article  PubMed  CAS  Google Scholar 

  16. Zhang J, Dai J, Yao Z, Lu Y, Dougall W, Keller ET (2003) Soluble receptor activator of nuclear factor kappaB Fc diminishes prostate cancer progression in bone. Cancer Res 63(22):7883–7890

    PubMed  CAS  Google Scholar 

  17. Morony S, Capparelli C, Sarosi I, Lacey DL, Dunstan CR, Kostenuik PJ (2001) Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 61(11):4432–4436

    PubMed  CAS  Google Scholar 

  18. Wilson TJ, Nannuru KC, Futakuchi M, Sadanandam A, Singh RK (2008) Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-{kappa}B ligand. Cancer Res 68(14):5803–5811

    Article  PubMed  CAS  Google Scholar 

  19. Wilson TJ, Singh RK (2008) Proteases as modulators of tumor–stromal interaction: primary tumors to bone metastases. Biochimica et Biophysica Acta (BBA) Rev Cancer 1785(2):85–95

    Article  CAS  Google Scholar 

  20. Lynch CC, Hikosaka A, Acuff HB, Martin MD, Kawai N, Singh RK et al (2005) MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7(5):485–496

    Article  PubMed  CAS  Google Scholar 

  21. Chesneau V, Becherer JD, Zheng Y, Erdjument-Bromage H, Tempst P, Blobel CP (2003) Catalytic properties of ADAM19. J Biol Chem 278(25):22331–22340

    Article  PubMed  CAS  Google Scholar 

  22. Schlondorff J, Lum L, Blobel CP (2001) Biochemical and pharmacological criteria define two shedding activities for TRANCE/OPGL that are distinct from the tumor necrosis factor alpha convertase. J Biol Chem 276(18):14665–14674

    Article  PubMed  CAS  Google Scholar 

  23. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52(6):1399–1405

    PubMed  CAS  Google Scholar 

  24. Chen Z, Varney ML, Backora MW, Cowan K, Solheim JC, Talmadge JE et al (2005) Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res 65(19):9004–9011

    Article  PubMed  CAS  Google Scholar 

  25. Heppner GH, Miller FR, Shekhar PM (2000) Nontransgenic models of breast cancer. Breast Cancer Res 2(5):331–334

    Article  PubMed  CAS  Google Scholar 

  26. Huang X, Wong MK, Yi H, Watkins S, Laird AD, Wolf SF et al (2002) Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic receptor tyrosine kinases, and the immunostimulator B7.2-IgG fusion protein. Cancer Res 62(20):5727–5735

    PubMed  CAS  Google Scholar 

  27. Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P et al (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17(2):163–170

    Article  PubMed  CAS  Google Scholar 

  28. Murphy BO, Joshi S, Kessinger A, Reed E, Sharp JG (2002) A murine model of bone marrow micrometastasis in breast cancer. Clin Exp Metastasis 19(7):561–569

    Article  PubMed  Google Scholar 

  29. Sloan EK, Stanley KL, Anderson RL (2004) Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23(47):7893–7897

    Article  PubMed  CAS  Google Scholar 

  30. Bennett CF, Cowsert LM (1999) Antisense oligonucleotides as a tool for gene functionalization and target validation. Biochim Biophys Acta 1489(1):19–30

    PubMed  CAS  Google Scholar 

  31. Henry SP, Geary RS, Yu R, Levin AA (2001) Drug properties of second-generation antisense oligonucleotides: how do they measure up to their predecessors? Curr Opin Invest Drugs 2(10):1444–1449

    CAS  Google Scholar 

  32. Kingsley LA, Fournier PGJ, Chirgwin JM, Guise TA (2007) Molecular biology of bone metastasis. Mol Cancer Ther 6(10):2609–2617

    Article  PubMed  CAS  Google Scholar 

  33. Siclari VA, Guise TA, Chirgwin JM (2006) Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases. Cancer Metastasis Rev 25(4):621–633

    Article  PubMed  CAS  Google Scholar 

  34. Blair JM, Zhou H, Seibel MJ, Dunstan CR (2006) Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat Clin Pract Oncol 3(1):41–49

    Article  PubMed  CAS  Google Scholar 

  35. Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP et al (2005) A mouse model of human breast cancer metastasis to human bone. Cancer Res 65(14):6130–6138

    Article  PubMed  CAS  Google Scholar 

  36. Reddi AH, Roodman D, Freeman C, Mohla S (2003) Mechanisms of tumor metastasis to the bone: challenges and opportunities. J Bone Miner Res 18(2):190–194

    Article  PubMed  CAS  Google Scholar 

  37. Varney ML, Singh S, Backora M, Chen Z, Singh RK (2008) Lymphangiogenesis and anti-tumor immune responses. Curr Mol Med (In Press)

  38. Grimaud E, Soubigou L, Couillaud S, Coipeau P, Moreau A, Passuti N et al (2003) Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 163(5):2021–2031

    PubMed  CAS  Google Scholar 

  39. Jung K, Stephan C, Semjonow A, Lein M, Schnorr D, Loening SA (2003) Serum osteoprotegerin and receptor activator of nuclear factor-kappa B ligand as indicators of disturbed osteoclastogenesis in patients with prostate cancer. J Urol 170(6 Pt 1):2302–2305

    Article  PubMed  Google Scholar 

  40. Seidel C, Hjertner O, Abildgaard N, Heickendorff L, Hjorth M, Westin J et al (2001) Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood 98(7):2269–2271

    Article  PubMed  CAS  Google Scholar 

  41. Terpos E, Szydlo R, Apperley JF, Hatjiharissi E, Politou M, Meletis J et al (2003) Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102(3):1064–1069

    Article  PubMed  CAS  Google Scholar 

  42. Kostenuik PJ, Singh G, Suyama KL, Orr FW (1992) Stimulation of bone resorption results in a selective increase in the growth rate of spontaneously metastatic Walker 256 cancer cells in bone. Clin Exp Metastasis 10(6):411–418

    Article  PubMed  CAS  Google Scholar 

  43. Schneider A, Kalikin LM, Mattos AC, Keller ET, Allen MJ, Pienta KJ et al (2005) Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology 146(4):1727–1736

    Article  PubMed  CAS  Google Scholar 

  44. Brown JE, Cook RJ, Major P, Lipton A, Saad F, Smith M et al (2005) Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. JNCI J Natl Cancer Inst 97(1):59–69

    Article  CAS  Google Scholar 

  45. Costa L, Demers LM, Gouveia-Oliveira A, Schaller J, Costa EB, de Moura MC et al (2002) Prospective evaluation of the peptide-bound collagen type I cross-links N-telopeptide and C-telopeptide in predicting bone metastases status. J Clin Oncol 20(3):850–856

    Article  PubMed  CAS  Google Scholar 

  46. Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R et al (1995) Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 55(16):3551–3557

    PubMed  CAS  Google Scholar 

  47. van der Pluijm G, Que I, Sijmons B, Buijs JT, Lowik CWGM, Wetterwald A et al (2005) Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 65(17):7682–7690

    PubMed  Google Scholar 

  48. Buijs JT, Que I, Lowik CW, Papapoulos SE, Van der Pluijm G (2009) Inhibition of bone resorption and growth of breast cancer in the bone microenvironment. Bone 44(2):380–386

    Google Scholar 

  49. Phadke PA, Mercer RR, Harms JF, Jia Y, Frost AR, Jewell JL et al (2006) Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res 12(5):1431–1440

    Article  PubMed  Google Scholar 

  50. Michaelson MD, Smith MR (2005) Bisphosphonates for treatment and prevention of bone metastases. J Clin Oncol 23(32):8219–8224

    Article  PubMed  CAS  Google Scholar 

  51. Saarto T, Vehmanen L, Virkkunen P, Blomqvist C (2004) Ten-year follow-up of a randomized controlled trial of adjuvant clodronate treatment in node-positive breast cancer patients. Acta Oncol 43(7):650–656

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants CA72781 (R.K.S.) and Cancer Center Support Grant (P30CA036727) from National Cancer Institute, National Institutes of Health, Susan G. Komen for the Cure grant KG090860 and Nebraska Research Initiative Program in Cancer Glycobiology (R.K.S.), Department of Defense Breast Cancer Research Program Predoctoral traineeship award (K.C.N) and the Howard Hughes Medical Institute Research Training Fellowship (T.J.W.). We thank Dr. James Eudy and the UNMC DNA Microarray Core Facility for help in microarray analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nannuru, K.C., Futakuchi, M., Sadanandam, A. et al. Enhanced expression and shedding of receptor activator of NF-κB ligand during tumor–bone interaction potentiates mammary tumor-induced osteolysis. Clin Exp Metastasis 26, 797–808 (2009). https://doi.org/10.1007/s10585-009-9279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-009-9279-2

Keywords

Navigation