Skip to main content
Log in

Imaging of atherosclerosis

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is a major health concern worldwide and atherosclerosis is the main cause of CVD. Atherosclerosis is a systemic and chronic inflammatory disease, which is characterized by plaque formation and can affect different vascular beds. Imaging of atherosclerosis could guide therapeutic interventions. Ultrasound, computed tomography, magnetic resonance imaging (MRI), positron emission tomography (PET) and interventional angiography are the main imaging modalities available for the assessment of atherosclerotic burden and for potential prediction of future events. In addition, the introduction of new hybrid imaging techniques like PET/MRI allow for the simultaneous evaluation of anatomical and metabolic characteristics tissues. This article provides an overview of coronary and non-coronary atherosclerosis and summarizes the current understanding of different available imaging techniques. The integration of these techniques in clinical practice may allow for superior risk stratification and therapeutic planning as well as monitoring of interventional and medication based treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mozaffarian D, Benjamin EJ, Go AS et al (2015) Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322. doi:10.1161/CIR.0000000000000152

    Article  PubMed  Google Scholar 

  2. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143

    Article  PubMed  CAS  Google Scholar 

  3. Fleg JL, Stone GW, Fayad ZA et al (2012) Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions. JACC Cardiovasc Imaging 5(9):941–955. doi:10.1016/j.jcmg.2012.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  4. Libby P (2013) Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med 368(21):2004–2013. doi:10.1056/NEJMra1216063

    Article  PubMed  CAS  Google Scholar 

  5. Schoenhagen P, Stone GW, Nissen SE et al (2003) Coronary plaque morphology and frequency of ulceration distant from culprit lesions in patients with unstable and stable presentation. Arterioscler Thromb Vasc Biol 23(10):1895–1900. doi:10.1161/01.ATV.0000084811.73196.1C

    Article  PubMed  CAS  Google Scholar 

  6. Wilcox JN, Smith KM, Schwartz SM, Gordon D (1989) Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 86(8):2839–2843

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, Virmani R (1996) Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93(7):1354–1363

    Article  PubMed  CAS  Google Scholar 

  8. Tonino PA, Fearon WF, De Bruyne B et al (2010) Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 55(25):2816–2821. doi:10.1016/j.jacc.2009.11.096

    Article  PubMed  Google Scholar 

  9. Nesto RW, Kowalchuk GJ (1987) The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol 59(7):23C–30C

    Article  PubMed  CAS  Google Scholar 

  10. Krittayaphong R, Chaithiraphan V, Maneesai A, Udompanturak S (2011) Prognostic value of combined magnetic resonance myocardial perfusion imaging and late gadolinium enhancement. Int J Cardiovasc Imaging 27(5):705–714. doi:10.1007/s10554-011-9863-9

    Article  PubMed  Google Scholar 

  11. Hojjati MR, Muthupillai R, Wilson JM, Preventza OA, Cheong BY (2014) Assessment of perfusion and wall-motion abnormalities and transient ischemic dilation in regadenoson stress cardiac magnetic resonance perfusion imaging. Int J Cardiovasc Imaging 30(5):949–957. doi:10.1007/s10554-014-0415-y

    Article  PubMed  Google Scholar 

  12. Gaemperli O, Luscher TF, Bax JJ (2013) View point: what should the future design of clinical imaging studies be? Eur Heart J 34(31):2432–2435. doi:10.1093/eurheartj/eht170

    Article  PubMed  Google Scholar 

  13. Takx RA, Zanen P, Leiner T, van der Graaf Y, de Jong PA, SMART study group (2015) The interdependence between cardiovascular calcifications in different arterial beds and vascular risk factors in patients at high cardiovascular risk. Atherosclerosis 238(1):140–146. doi:10.1016/j.atherosclerosis.2014.11.024

    Article  PubMed  CAS  Google Scholar 

  14. Tison GH, Blaha MJ, Nasir K (2011) Atherosclerosis imaging in multiple vascular beds—enough heterogeneity to improve risk prediction? Atherosclerosis 214(2):261–263. doi:10.1016/j.atherosclerosis.2010.10.014

    Article  PubMed  CAS  Google Scholar 

  15. Flaherty ML, Kissela B, Khoury JC et al (2013) Carotid artery stenosis as a cause of stroke. Neuroepidemiology 40(1):36–41. doi:10.1159/000341410

    Article  PubMed  PubMed Central  Google Scholar 

  16. Petty GW, Brown RD Jr, Whisnant JP, Sicks JD, O’Fallon WM, Wiebers DO (1999) Ischemic stroke subtypes: a population-based study of incidence and risk factors. Stroke 30(12):2513–2516

    Article  PubMed  CAS  Google Scholar 

  17. Spagnoli LG, Mauriello A, Sangiorgi G et al (2004) Extracranial thrombotically active carotid plaque as a risk factor for ischemic stroke. JAMA 292(15):1845–1852. doi:10.1001/jama.292.15.1845

    Article  PubMed  CAS  Google Scholar 

  18. Xing C, Arai K, Lo EH, Hommel M (2012) Pathophysiologic cascades in ischemic stroke. Int J Stroke 7(5):378–385. doi:10.1111/j.1747-4949.2012.00839.x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Virmani R, Ladich ER, Burke AP, Kolodgie FD (2006) Histopathology of carotid atherosclerotic disease. Neurosurgery 59(5 Suppl 3):S219–S227. doi:10.1227/01.NEU.0000239895.00373.E4 (discussion S213–213)

    PubMed  Google Scholar 

  20. Tunick PA, Kronzon I (2000) Atheromas of the thoracic aorta: clinical and therapeutic update. J Am Coll Cardiol 35(3):545–554

    Article  PubMed  CAS  Google Scholar 

  21. Saric M, Kronzon I (2012) Aortic atherosclerosis and embolic events. Curr Cardiol Rep 14(3):342–349. doi:10.1007/s11886-012-0261-2

    Article  PubMed  Google Scholar 

  22. Lao D, Parasher PS, Cho KC, Yeghiazarians Y (2011) Atherosclerotic renal artery stenosis—diagnosis and treatment. Mayo Clin Proc 86(7):649–657. doi:10.4065/mcp.2011.0181

    Article  PubMed  PubMed Central  Google Scholar 

  23. Safian RD, Textor SC (2001) Renal-artery stenosis. N Engl J Med 344(6):431–442. doi:10.1056/NEJM200102083440607

    Article  PubMed  CAS  Google Scholar 

  24. Edwards MS, Craven TE, Burke GL, Dean RH, Hansen KJ (2005) Renovascular disease and the risk of adverse coronary events in the elderly: a prospective, population-based study. Arch Intern Med 165(2):207–213. doi:10.1001/archinte.165.2.207

    Article  PubMed  Google Scholar 

  25. Hirsch AT, Criqui MH, Treat-Jacobson D et al (2001) Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286(11):1317–1324

    Article  PubMed  CAS  Google Scholar 

  26. Hussein AA, Uno K, Wolski K et al (2011) Peripheral arterial disease and progression of coronary atherosclerosis. J Am Coll Cardiol 57(10):1220–1225. doi:10.1016/j.jacc.2010.10.034

    Article  PubMed  Google Scholar 

  27. Serrano Hernando FJ, Martin Conejero A (2007) Peripheral artery disease: pathophysiology, diagnosis and treatment. Rev Esp Cardiol 60(9):969–982

    Article  PubMed  Google Scholar 

  28. Ouriel K (2001) Peripheral arterial disease. Lancet 358(9289):1257–1264. doi:10.1016/S0140-6736(01)06351-6

    Article  PubMed  CAS  Google Scholar 

  29. Pavlovic C, Futamatsu H, Angiolillo DJ et al (2007) Quantitative contrast enhanced magnetic resonance imaging for the evaluation of peripheral arterial disease: a comparative study versus standard digital angiography. Int J Cardiovasc Imaging 23(2):225–232. doi:10.1007/s10554-006-9133-4

    Article  PubMed  Google Scholar 

  30. Partovi S, Rasmus M, Schulte AC et al (2013) ECG-triggered non-enhanced MR angiography of peripheral arteries in comparison to DSA in patients with peripheral artery occlusive disease. MAGMA 26(3):271–280. doi:10.1007/s10334-012-0352-5

    Article  PubMed  CAS  Google Scholar 

  31. Wagner M, Knobloch G, Gielen M, Lauff MT, Romano V, Hamm B, Kroncke T (2015) Nonenhanced peripheral MR-angiography (MRA) at 3 Tesla: evaluation of quiescent-interval single-shot MRA in patients undergoing digital subtraction angiography. Int J Cardiovasc Imaging 31(4):841–850. doi:10.1007/s10554-015-0612-3

    Article  PubMed  Google Scholar 

  32. Mathiesen EB, Johnsen SH, Wilsgaard T, Bonaa KH, Lochen ML, Njolstad I (2011) Carotid plaque area and intima-media thickness in prediction of first-ever ischemic stroke: a 10-year follow-up of 6584 men and women: the Tromso Study. Stroke 42(4):972–978. doi:10.1161/STROKEAHA.110.589754

    Article  PubMed  Google Scholar 

  33. Den Ruijter HM, Peters SA, Anderson TJ et al (2012) Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA 308(8):796–803. doi:10.1001/jama.2012.9630

    Article  Google Scholar 

  34. Staub D, Patel MB, Tibrewala A et al (2010) Vasa vasorum and plaque neovascularization on contrast-enhanced carotid ultrasound imaging correlates with cardiovascular disease and past cardiovascular events. Stroke 41(1):41–47. doi:10.1161/STROKEAHA.109.560342

    Article  PubMed  Google Scholar 

  35. Staub D, Partovi S, Schinkel AF et al (2011) Correlation of carotid artery atherosclerotic lesion echogenicity and severity at standard US with intraplaque neovascularization detected at contrast-enhanced US. Radiology 258(2):618–626. doi:10.1148/radiol.10101008

    Article  PubMed  Google Scholar 

  36. Visser K, Hunink MG (2000) Peripheral arterial disease: gadolinium-enhanced MR angiography versus color-guided duplex US—a meta-analysis. Radiology 216(1):67–77. doi:10.1148/radiology.216.1.r00jl0367

    Article  PubMed  CAS  Google Scholar 

  37. Garcia-Garcia HM, Costa MA, Serruys PW (2010) Imaging of coronary atherosclerosis: intravascular ultrasound. Eur Heart J 31(20):2456–2469. doi:10.1093/eurheartj/ehq280

    Article  PubMed  Google Scholar 

  38. Sawada T, Shite J, Garcia-Garcia HM et al (2008) Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J 29(9):1136–1146. doi:10.1093/eurheartj/ehn132

    Article  PubMed  Google Scholar 

  39. Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI (2009) Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Intervent 2(11):1035–1046. doi:10.1016/j.jcin.2009.06.019

    Article  Google Scholar 

  40. Plank F, Friedrich G, Dichtl W, Klauser A, Jaschke W, Franz WM, Feuchtner G (2014) The diagnostic and prognostic value of coronary CT angiography in asymptomatic high-risk patients: a cohort study. Open Heart 1(1):e000096. doi:10.1136/openhrt-2014-000096

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun Z, Ng KH (2012) Diagnostic value of coronary CT angiography with prospective ECG-gating in the diagnosis of coronary artery disease: a systematic review and meta-analysis. Int J Cardiovasc Imaging 28(8):2109–2119. doi:10.1007/s10554-011-0006-0

    Article  PubMed  Google Scholar 

  42. Hoffmann U, Butler J (2005) Noninvasive detection of coronary atherosclerotic plaque by multidetector row computed tomography. Int J Obes (Lond) 29(Suppl 2):S46–S53

    Article  Google Scholar 

  43. Lo J, Lu MT, Ihenachor EJ et al (2015) Effects of statin therapy on coronary artery plaque volume and high-risk plaque morphology in HIV-infected patients with subclinical atherosclerosis: a randomised, double-blind, placebo-controlled trial. Lancet HIV 2(2):e52–e63. doi:10.1016/S2352-3018(14)00032-0

    Article  PubMed  Google Scholar 

  44. Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U (2014) Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol 11(7):390–402. doi:10.1038/nrcardio.2014.60

    Article  PubMed  Google Scholar 

  45. Lettau M, Sauer A, Heiland S, Rohde S, Bendszus M, Hahnel S (2009) Carotid artery stents: in vitro comparison of different stent designs and sizes using CT angiography and contrast-enhanced MR angiography at 1.5 T and 3 T. AJNR Am J Neuroradiol 30(10):1993–1997. doi:10.3174/ajnr.A1743

    Article  PubMed  CAS  Google Scholar 

  46. Manninen AL, Isokangas JM, Karttunen A, Siniluoto T, Nieminen MT (2012) A comparison of radiation exposure between diagnostic CTA and DSA examinations of cerebral and cervicocerebral vessels. AJNR Am J Neuroradiol 33(11):2038–2042. doi:10.3174/ajnr.A3123

    Article  PubMed  Google Scholar 

  47. Ghoshhajra BB, Engel LC, Major GP et al (2012) Evolution of coronary computed tomography radiation dose reduction at a tertiary referral center. Am J Med 125(8):764–772. doi:10.1016/j.amjmed.2011.10.036

    Article  PubMed  Google Scholar 

  48. Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191(1):155–164. doi:10.1148/radiology.191.1.8134563

    Article  PubMed  CAS  Google Scholar 

  49. Fayad ZA (2001) The assessment of the vulnerable atherosclerotic plaque using MR imaging: a brief review. Int J Cardiovasc Imaging 17(3):165–177. doi:10.1023/A:1010611530845

    Article  PubMed  CAS  Google Scholar 

  50. Grobner T (2006) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21(4):1104–1108. doi:10.1093/ndt/gfk062

    Article  PubMed  CAS  Google Scholar 

  51. Lim RP, Koktzoglou I (2015) Noncontrast magnetic resonance angiography: concepts and clinical applications. Radiol Clin North Am 53(3):457–476. doi:10.1016/j.rcl.2014.12.003

    Article  PubMed  Google Scholar 

  52. Pollak AW, Norton PT, Kramer CM (2012) Multimodality imaging of lower extremity peripheral arterial disease: current role and future directions. Circ Cardiovasc Imaging 5(6):797–807. doi:10.1161/CIRCIMAGING.111.970814

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chu B, Kampschulte A, Ferguson MS et al (2004) Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke 35(5):1079–1084. doi:10.1161/01.STR.0000125856.25309.86

    Article  PubMed  Google Scholar 

  54. Singh N, Moody AR, Gladstone DJ, Leung G, Ravikumar R, Zhan J, Maggisano R (2009) Moderate carotid artery stenosis: MR imaging-depicted intraplaque hemorrhage predicts risk of cerebrovascular ischemic events in asymptomatic men. Radiology 252(2):502–508. doi:10.1148/radiol.2522080792

    Article  PubMed  Google Scholar 

  55. Yang Q, Li K, Liu X et al (2012) 3.0 T whole-heart coronary magnetic resonance angiography performed with 32-channel cardiac coils: a single-center experience. Circ Cardiovasc Imaging 5(5):573–579. doi:10.1161/CIRCIMAGING.112.974972

    Article  PubMed  PubMed Central  Google Scholar 

  56. Alie N, Eldib M, Fayad ZA, Mani V (2014) Inflammation, atherosclerosis, and coronary artery disease: PET/CT for the evaluation of atherosclerosis and inflammation. Clin Med Insights Cardiol 8(Suppl 3):13–21. doi:10.4137/CMC.S17063

    PubMed  PubMed Central  Google Scholar 

  57. Hiari N, Rudd JH (2011) FDG PET imaging and cardiovascular inflammation. Curr Cardiol Rep 13(1):43–48. doi:10.1007/s11886-010-0150-5

    Article  PubMed  Google Scholar 

  58. Tawakol A, Fayad ZA, Mogg R et al (2013) Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J Am Coll Cardiol 62(10):909–917. doi:10.1016/j.jacc.2013.04.066

    Article  PubMed  CAS  Google Scholar 

  59. Wykrzykowska J, Lehman S, Williams G et al (2009) Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 50(4):563–568. doi:10.2967/jnumed.108.055616

    Article  PubMed  Google Scholar 

  60. Nensa F, Poeppel TD, Beiderwellen K et al (2013) Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology 268(2):366–373. doi:10.1148/radiol.13130231

    Article  PubMed  Google Scholar 

  61. Bini J, Eldib M, Robson PM, Calcagno C, Fayad ZA (2015) Simultaneous carotid PET/MR: feasibility and improvement of magnetic resonance-based attenuation correction. Int J Cardiovasc Imaging. doi:10.1007/s10554-015-0661-7

    PubMed  Google Scholar 

  62. Bini J, Robson PM, Calcagno C, Eldib M, Fayad ZA (2015) Quantitative carotid PET/MR imaging: clinical evaluation of MR-Attenuation correction versus CT-Attenuation correction in (18)F-FDG PET/MR emission data and comparison to PET/CT. Am J Nucl Med Mol Imaging 5(3):293–304

    PubMed  PubMed Central  Google Scholar 

  63. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, Koolen JJ (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334(26):1703–1708. doi:10.1056/NEJM199606273342604

    Article  PubMed  CAS  Google Scholar 

  64. Gabriel J, Klimach S, Lang P, Hildick-Smith D (2015) Should computed tomography angiography supersede invasive coronary angiography for the evaluation of graft patency following coronary artery bypass graft surgery? Interact Cardiovasc Thorac Surg. doi:10.1093/icvts/ivv078

    PubMed  Google Scholar 

  65. Min JK, Dunning A, Lin FY et al (2011) Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol 58(8):849–860. doi:10.1016/j.jacc.2011.02.074

    Article  PubMed  Google Scholar 

  66. Giugliano RP, Sabatine MS (2015) Are PCSK9 inhibitors the next breakthrough in the cardiovascular field? J Am Coll Cardiol 65(24):2638–2651. doi:10.1016/j.jacc.2015.05.001

    Article  PubMed  CAS  Google Scholar 

  67. Mayor S (2015) PCSK9 inhibitors reduce cardiovascular events, preliminary data show. BMJ 350:h1508. doi:10.1136/bmj.h1508

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian B. Ghoshhajra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takx, R.A.P., Partovi, S. & Ghoshhajra, B.B. Imaging of atherosclerosis. Int J Cardiovasc Imaging 32, 5–12 (2016). https://doi.org/10.1007/s10554-015-0730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0730-y

Keywords

Navigation