Skip to main content

Advertisement

Log in

Imaging the Coronary Artery Plaque: Approaches, Advances, and Challenges

  • Plaque Imaging (V Dilsizian and T Schindler, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Atherosclerosis is a major cause of morbidity and mortality in the world, largely due to the disruption of high-risk plaques (HRP). Understanding how best to identify HRP, using imaging, has the potential to improve assessment of cardiovascular disease (CVD) risk and facilitate better targeting of care to patients.

Recent Findings

Technological advances have been made across several imaging modalities, which provide opportunities to image HRP. Advances in computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), intravascular ultrasound (IVUS), optical coherence tomography (OCT), and near-infrared spectroscopy (NIRS) target multiple features of HRP.

Summary

A growing number of studies have demonstrated their utility in assessing risk and guiding therapeutic interventions. While opportunities exist today to employ HRP imaging, further studies are needed to assess the value of imaging HRP to refine CVD risk and target therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med. 1992;326:242–50.

    Article  CAS  PubMed  Google Scholar 

  2. Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction. N Engl J Med. 2012;366:54–63.

    Article  CAS  PubMed  Google Scholar 

  3. Dweck MR, Puntmann VO, Vesey AT, Fayad ZA, Nagel E. MR imaging of coronary arteries and plaques. J Am Coll Cardiol Img. 2016;9(3):306–16.

    Article  Google Scholar 

  4. Batty JA, Subba S, Luke P, Gigi LWC, Sinclair H, Kunadian V. Intracoronary imaging in the detection of vulnerable plaques. Current Cardiology Reports. 2016;18(3):28.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ryan TJ. The coronary angiogram and its seminal contributions to cardiovascular medicine over five decades. Circulation. 2002;106(6):752–6.

    Article  PubMed  Google Scholar 

  6. Kolodgie FD, Virmani R, Burke AP, et al. Pathologic assessment of the vulnerable human coronary plaque. Heart. 2004;90:1385–91

  7. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circulation. 2014;114(12):1852–66.

    Article  CAS  Google Scholar 

  8. Shapiro E, Bush D, Motoyama S, Virmani R, Narula J. Imaging of vulnerable atherosclerotic plaques. In: Budoff M, Achenbach S, Narula J, editors. Atlas of Cardiovascular Computed Tomography. Philadel- phia, PA: Current Medicine Group LLC; 2007. p. 119–38.

    Google Scholar 

  9. Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, Strauss HW. Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med. 2008;5(Suppl 2):2–10.

    Article  Google Scholar 

  10. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.

    Article  CAS  PubMed  Google Scholar 

  11. Pozo E, Agudo-Quilez P, Rojas-González A, Alvarado T, Olivera MJ, Jiménez-Borreguero LJ, et al. Noninvasive diagnosis of vulnerable coronary plaque. World J Cardiol. 2016;8(9):520.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jaffer FA, Libby P, Weissleder R. Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol. 2006;47(7):1328–38.

    Article  CAS  PubMed  Google Scholar 

  13. Miao C, Chen S, Macedo R, et al. Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population. J Am Coll Cardiol. 2009;53:1708–15.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Narula J, Strauss HW. The popcorn plaques. Nat Med. 2007;13(5):532–4.

  15. Falk E, Nakano M, Bentzon JF, et al. Update on acute coronary syndromes: the pathologists. Eur Heart J. 2013;34:719.

    Article  CAS  PubMed  Google Scholar 

  16. Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276.

    Article  CAS  PubMed  Google Scholar 

  17. Grebe A, Latz E. Cholesterol crystals and inflammation. Curr Rheumatol Rep. 2013;15:313.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Janoudi A, Shamoun FE, Kalavakunta JK, et al. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J. 2016;37:1959.

    Article  PubMed  Google Scholar 

  19. Roijers RB, Debernardi N, Cleutjens JP, et al. Micro-calcifications in early intimal lesions of atherosclerotic human coronary arteries. Am J Pathol. 2011;178(6):2879–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shah NR, Coulter SA. An evidence-based guide for coronary calcium scoring in asymptomatic patients without coronary heart disease. Annual Symposium on Risk, Diagnosis and Treatment of Cardiovascular Disease in Women. Texas Heart Institute, Houston. 2011;39(2):240–2.

    Google Scholar 

  21. Budoff MJ, Young R, Lopez VA, et al. Progression of coronary calcium and incident coronary heart disease events: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2013;61(12):1231e9.

    Article  Google Scholar 

  22. Keelan PC, Bielak LF, Ashai K, et al. Long-term prognostic value of coronary calcification detected by electron-beam computed tomography in patients undergoing coronary angiography. Circulation. 2001;104:412–7.

    Article  CAS  PubMed  Google Scholar 

  23. Wong ND, Hsu JC, Detrano RC, Diamond G, Eisenberg H, Gardin JM. Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol. 2000;86:495–8.

    Article  CAS  PubMed  Google Scholar 

  24. Arad Y, Spadaro LA, Goodman K, Newstein D, Guerci AD. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol. 2000;36:1253–60.

    Article  CAS  PubMed  Google Scholar 

  25. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2010;22:2748–64.

    Google Scholar 

  26. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45.

    Article  CAS  PubMed  Google Scholar 

  27. Greenland P, LaBree L, Azen SP, et al. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291:210–5.

    Article  CAS  PubMed  Google Scholar 

  28. Lakoski SG, Greenland P, Wong ND, et al. Coronary artery calcium scores and risk for cardiovascular events in women classified as “low risk” based on Framingham risk score: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2007;167:2437–42.

    Article  PubMed  Google Scholar 

  29. Polonsky TS, McClelland RL, Jorgensen NW, et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA. 2010;303:1610–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nasir K, Bittencourt MS, Blaha MJ, et al. Implications of coronary aratery calcium testing among statin candidates according to the American College of Cardiology/American Heart Association cholesterol management guidelines. J Am Coll Cardiol. 2015;66(15):1657–68.

    Article  CAS  PubMed  Google Scholar 

  31. Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American college of cardiology/ American heart association task force on practice guidelines. Circulation. 2014;129:S49–73.

    Article  PubMed  Google Scholar 

  32. Tarkin JM, Dweck MR, Evans NR, et al. Imaging atherosclerosis. Circ Res. 2016;118(4):750–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Motoyama S, Kondo T, Sarai M, et al. Multislice computed topographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.

    Article  PubMed  Google Scholar 

  34. You S, Sun JS, Park SY, Baek Y, Kang DK. Relationship between indexed epicardial fat volume and coronary plaque volume assessed by cardiac multidetector CT. Medicine. 2016;95(27):e4164.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Narula J, Achenbach S. Napkin-ring necrotic cores: defining circumferential extent of necrotic cores in unstable plaques. JACC Cardiovasc Imaging. 2009;2(12):1436–8.

    Article  PubMed  Google Scholar 

  36. Maurovich-Horvat P, Hoffmann U, Vorpahl M, Nakano M, Virmani R, Alkadhi H. The napkin-ring sign: CT signature of high-risk coronary plaques? JACC Cardiovasc Imaging. 2010;3(4):440–4.

    Article  PubMed  Google Scholar 

  37. Stolzmann P, Subramanian S, Abdelbaky A, Maurovich-Horvat P, Scheffel H, Tawakol A, et al. Complementary value of cardiac FDG PET and CT for the characterization of atherosclerotic disease. Radiographics. 2011;31(5):1255–69.

    Article  PubMed  Google Scholar 

  38. Hamed Emami, Richard A.P. Takx, Thomas Mayrhofer, et al. Nonobstructive coronary artery disease by coronary CT angiography improves risk stratification and allocation of statin therapy. J Am Coll Cardiol Img. 2017.

  39. Heo R, Nakazato R, Kalra D, Min JK. Noninvasive imaging in coronary artery disease. Semin Nucl Med. 2014;44(5):398–409. doi:10.1053/j.semnuclmed.2014.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Danad I, Hartaigh BO, Min JK. Dual-energy computed tomography for detection of coronary artery disease. Expert Rev Cardiovasc Ther. 2015;13(12):1345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pursnani A, Narang A, Edelman R. Cardiac computed tomography and magnetic resonance imaging: complementary or competing? EuroIntervention. 2016;12(X).

  42. Fayad ZA, Fuster V, Fallon JT, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation. 2000;102:506–10.

    Article  CAS  PubMed  Google Scholar 

  43. Watanabe Y, Nagayama M, Suga T, et al. Characterization of atherosclerotic plaque of ca- rotid arteries with histopathological correlation: vascular wall MR imaging vs. color Doppler ultrasonography (US). J Magn Reson Imaging. 2008;28:478–85.

    Article  PubMed  Google Scholar 

  44. Pedersen SF, Thrysoe SA, Paaske WP, et al. Determination of edema in porcine coronary arteries by T2 weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:52.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Phinikaridou A, Andia ME, Passacquale G, et al. Noninvasive MRI monitoring of the effect of interventions on endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. J Am Heart Assoc. 2013;2(5):e000402.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tang TY, Howarth SP, Miller SR, et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) study. Evaluation using ultrasmall supermagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol. 2009;53(22):2039–50.

    Article  CAS  PubMed  Google Scholar 

  47. Joseph P, Tawakol A. Imaging atherosclerosis with positron emission tomography. Eur Heart J. 2016;37(39):2974–80.

    Article  PubMed  Google Scholar 

  48. Fuster V, Lewis A. Conner memorial lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology (erratum Circulation 1995;91:256). Circulation. 1994;90:2126–46.

    Article  CAS  PubMed  Google Scholar 

  49. Muller JE, Abela GS, Nesto RW, Tofler GH. Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. J Am Coll Cardiol. 1994;23:809–13.

    Article  CAS  PubMed  Google Scholar 

  50. Rogers IS, Nasir K, Figueroa AL, et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging. 2010;3:388–97.

    Article  PubMed  Google Scholar 

  51. Tawakol A, Migrino RQ, Hoffmann U, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol. 2005;12:294–301.

    Article  PubMed  Google Scholar 

  52. Tawakol A, Migrino RQ, Bashian GG, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48:1818–24.

    Article  PubMed  Google Scholar 

  53. Abdelbaky A, Corsini E, Figueroa AL, et al. Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study. Circ Cardiovasc Imaging. 2013;6(5):747–54.

    Article  PubMed  Google Scholar 

  54. Figueroa AL, Abdelbaky A, Truong QA, et al. Measurement of arterial activity on routine FDG PET/CT image improves prediction of risk of future CV events. J Am Coll Cardiol: Cardiovasc Imaging. 2013;6(12):1250–9.

    Article  Google Scholar 

  55. Marnane M, Merwick A, Sheehan OC, et al. Carotid plaque inflammation on (18) F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol. 2012;71(5):709–18.

    Article  PubMed  Google Scholar 

  56. Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol. 2008;190(2):W151–6.

    Article  PubMed  Google Scholar 

  57. Singh P, Emami H, Subramanian S, et al. Coronary plaque morphology and the anti-inflammatory impact of atorvastatin: a multicenter 18F-Fluorodeoxyglucose positron emission tomographic/computed tomographic study. Circ Cardiovasc Imaging. 2016;9(12):e004195.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nitta Y, Tahara N, Tahara A, et al. Pioglitazone decreases coronary artery inflammation in impaired glucose tolerance and diabetes mellitus evaluation by FDG-PET/CT imaging. J Am Coll Cardiol Cardiovasc Imaging. 2013;6:1172–82.

    Article  Google Scholar 

  59. Wykrzykowska J, Lehman S, Williams G, et al. Imaging of inflamed and vulnerable plaque in journal of nuclear cardiology wells and Ruddy: the dream of imaging coronary artery inflammation coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate. High-Fat Preparation J Nucl Med. 2009;50:563–8.

    PubMed  Google Scholar 

  60. • Tawakol A, Fayad ZA, Mogg R, et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computer tomography feasibility study. J Am Coll Cardiol. 2013;62(10):909–17. This study demonstrates the utility of FDG-PET in detecting early treatment effects in patients with atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  61. Suda M, Kiriyama T, Ishihara K, Onoguchi M, Kobayashi Y,Sakurai M, et al. The high matrix acquisition technique for imaging of atherosclerotic plaque inflammation in fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography with time-of-flight: Phantom study. J Nucl Cardiol. 2016.

  62. Slomka PJ, Rubeaux M, Le Meunier L, Dey D, Lazewatsky JL, Pan T, Dweck MR, et al. Dual-gated motion-frozen cardiac PET with Flurpiridaz F 18. J Nucl Med. 2015;56:1876–81.

    Article  CAS  PubMed  Google Scholar 

  63. Budoff MJ, Gul KM. Expert review on coronary calcium. Vasc Health Risk Manag. 2008;4:315–24.

    Article  PubMed  PubMed Central  Google Scholar 

  64. • Dweck MR, Chow MW, Joshi NV, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59(7):1539–48. This study demonstrates the utility of 18F-sodium fluoride as a marker for detecting vulnerable plaque and recent plaque rupture. This finding is important in assessing the role of intervention.

    Article  CAS  PubMed  Google Scholar 

  65. Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.

    Article  PubMed  Google Scholar 

  66. Dalm VA, van Hagen PM, van Koetsveld PM, et al. Expression of somatostatin, cortistatin, and somatostatin receptors in human monocytes, macrophages, and dendritic cells. Am J Physiol Endocrinol Metab. 2003;285(2):E344–53.

    Article  CAS  PubMed  Google Scholar 

  67. Armani C, Catalani E, Balbarini A, Bagnoli P, Cervia D. Expression, pharmacology, and functional role of somatostatin receptor subtypes 1 and 2 in human macrophages. J Leukoc Biol. 2007;81(3):845–55.

    Article  CAS  PubMed  Google Scholar 

  68. Pedersen SF, Sandholt BV, Keller SH, et al. 64Cu-DOTATATE PET/MRI for detection of activated macrophages in carotid atherosclerotic plaques: studies in patients undergoing endarterectomy. Arterioscler Thromb Vasc Biol. 2015;35(7):1696–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tawakol A, Singh P, Mojena M, et al. HIF-1alpha and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages. Arterioscler Thromb Vasc Biol. 2015;35(6):1463–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mateo J, Izquierdo-Garcia D, Badimon JJ, Fayad ZA, Fuster V. Noninvasive assessment of hypoxia in rabbit advanced atherosclerosis using (1)(8)F-fluoromisonidazole positron emission tomographic imaging. Circ Cardiovasc Imaging. 2014;7(2):312–20.

    Article  PubMed  PubMed Central  Google Scholar 

  71. van der Valk FM, Sluimer JC, Voo SA, et al. In vivo imaging of hypoxia in atherosclerotic plaques in humans. JACC Cardiovasc Imaging. 2015;8(11):1340–1.

    Article  PubMed  Google Scholar 

  72. Mintz GS. Clinical utility of intravascular imaging and physiology in coronary artery disease. J Am Coll Cardiol. 2014;64(2):207–22.

    Article  PubMed  Google Scholar 

  73. Hayat U, Thondapu V, Haq MAU, Foin N, Jang I-K, Barlis P. Optical coherence tomography to evaluate coronary stent implantation and complications. Coron Artery Dis. 2015;26:e55–68.

    Article  PubMed  Google Scholar 

  74. Konishi A, Shinke T, Otake H, et al. Serial optical coherence tomography evaluation at 6, 12, and 24 months after Biolimus A9- eluting biodegradable polymer-coated stent implantation. Can J Cardiol. 2015;31(8):980–8.

    Article  PubMed  Google Scholar 

  75. Elliott MR, Thrush AJ. Measurement of resolution in intravascular ultrasound images. Physiol Meas. 1996;17:259–65.

    Article  CAS  PubMed  Google Scholar 

  76. Brezinski ME, Tearney GJ, Weissman NJ, Boppart SA, Bouma BE, Hee MR, Weyman AE, Swanson EA, Southern JF, Fujimoto JG. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart. 1996;77:397–403.

    Article  Google Scholar 

  77. Hoang V, Grounds J, Pham D, et al. Role of intracoronary plaque imaging with intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy in patients with coronary artery disease. Curr Atheroscler Rep. 2016;18:57.

    Article  PubMed  Google Scholar 

  78. Garcia-Garcia HM, Costa MA, Serruys PW. Imaging of coronary atherosclerosis: intravascular ultrasound. Eur Heart Journ. 2010;31:2456–69.

    Article  Google Scholar 

  79. • Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history of coronary atherosclerosis. N Engl J Med. 2011;364:226–35. This trial demonstrates that after ACS, recurrent MACE were equally attributable to recurrence at the site of culprit lesions and to nonculprit lesions. While nonculprit lesions that were responsible for unanticipated events were frequently angiographically mild, most were thin-cap fibroatheromas or were characterized by a large plaque burden, a small luminal area, or some combination of these characteristics.

    Article  CAS  PubMed  Google Scholar 

  80. Okada K, Fearon WF, Luikart H, et al. Attenuated-signal plaque progression predicts long-term mortality after heart transplantation. J Am Coll Cardiol. 2016;68(4):382–92.

    Article  PubMed  Google Scholar 

  81. Tuzcu EM, Hobbs RE, Rincon G, Bott-Silverman C, DeFranco AC, Robinson K, et al. Occult and frequent transmission of atherosclerotic coronary disease with cardiac transplantation. Insights from intravascular ultrasound. Circulation. 1995;91:1706–13.

    Article  CAS  PubMed  Google Scholar 

  82. ACCF/AHA/SCAI Practice Guideline. ACCF/AHA/SCAI guideline for percutaneous coronary intervention: executive summary. Circulation. 2011;2011:2574–609.

    Google Scholar 

  83. Maejima N, Hibi K, Saka K, et al. Morphological features of non-culprit plaques on optical coherence tomography and integrated backscatter intravascular ultrasound in patients with acute coronary syndromes. Eur Heart Jour- Cardiovascular Imaging. 2014;16:190–7.

    Article  Google Scholar 

  84. Kawasaki M. In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation. 2002;105:2487–92.

    Article  PubMed  Google Scholar 

  85. Kawasaki M, Sano K, Okubo M, et al. Volumetric quantitative analysis of tissue characteristics of coronary plaques after statin therapy using three-dimensional integrated backscatter intravascular ultrasound. J Am Coll Cardiol. 2005;45:1946–53.

    Article  CAS  PubMed  Google Scholar 

  86. Okubo M, Kawasaki M, Ishihara Y, et al. Development of integrated backscatter intravascular ultrasound for tissue characterization of coronary plaques. Ultrasound in med and bio. 2008;34:655–63.

    Article  Google Scholar 

  87. Kato K, Yasutake M, Yonetsu T, et al. Intracoronary imaging modalities for vulnerable plaques. J Nippon Med Sch. 2011;78(6):340–51.

    Article  PubMed  Google Scholar 

  88. Obaid DR, Calvert PA, McNab D, et al. Identification of coronary plaque sub-types using virtual histology intravascular ultrasound is affected by inter-observer variability and differences in plaque definitions. Circ Cardiovasc Imaging. 2012;5:86–93.

    Article  PubMed  Google Scholar 

  89. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 2002;106:2200–6.

    Article  PubMed  Google Scholar 

  90. Rodriguez-Granillo GA, Garcia-Garcia HM, Mc Fadden EP, et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol. 2005;46:2038–42.

    Article  PubMed  Google Scholar 

  91. Nasu K, Tsuchikane E, Katoh O, et al. Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol. 2006;47:2405–12.

    Article  PubMed  Google Scholar 

  92. Kawaguchi R, Oshima S, Jingu M, et al. Usefulness of virtual histology intravascular ultrasound to predict distal embolization for ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2007;50:1641–6.

    Article  PubMed  Google Scholar 

  93. Celeng C, Takx RA, Ferencik M, Maurovich-Horvat P. Non-invasive and invasive imaging of vulnerable coronary plaque. Trends in Cardiovascular Medicine. 2016;26(6):538–47.

    Article  PubMed  Google Scholar 

  94. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.

    Article  PubMed  Google Scholar 

  95. Lindsay AC, Choudhury RP. Form to function: current and future roles for atherosclerosis imaging in drug development. Nat Rev Drug Discov. 2008;7:517–29.

    Article  CAS  PubMed  Google Scholar 

  96. Jang IK, Bouma BE, Kang DH, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604.

    Article  PubMed  Google Scholar 

  97. Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50:933–9.

    Article  PubMed  Google Scholar 

  98. Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:1551–5.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol. 2006;97:1172–5.

    Article  PubMed  Google Scholar 

  100. Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107:113–9.

    Article  PubMed  Google Scholar 

  101. Roleder T, Galougahi KK, Chin CY, Bhatti NK, Brilakis E, Nazif TM, et al. Utility of near-infrared spectroscopy for detection of thin-cap neoatherosclerosis. Eur Heart J Cardiovasc Imaging. 2016.

  102. Madder RD, Smith JL, Dixon SR, Goldstein JA. Composition of target lesions by near-infrared spectroscopy in patients with acute coronary syndrome versus stable angina. Circ Cardiovasc Interv. 2012;5:55–61.

    Article  PubMed  Google Scholar 

  103. Danek BA, Karatasakis A, Alame AJ, Nguyen-Trong P-KJ, Karacsonyi J, Rangan B, et al. Saphenous vein graft near-infrared spectroscopy imaging insights from the lipid core plaque association with clinical events near-infrared spectroscopy (ORACLE-NIRS) registry. Catheterization and Cardiovascular Interventions. 2016.

  104. Oemrawsingh RM, Cheng JM, Garcia-Garcia HM, et al. Near-infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. J Am Coll Cardiol. 2014;64(23):2510–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Tawakol.

Ethics declarations

Conflict of Interest

Natasha Mamdani, Brian Tung, and Ying Wang have nothing to disclose. Farrouc A. Jaffer-Research Grant: Siemens, Canon; Funding: NIH R01 HL122388; Consultant: Abbott Vascular, Boston Scientific, Siemens. Ahmed Tawakol- Research Grant: Actelion, Genentech; Funding: NIH; Consultant: Actelion, Amgen.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Plaque Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamdani, N., Tung, B., Wang, Y. et al. Imaging the Coronary Artery Plaque: Approaches, Advances, and Challenges. Curr Cardiovasc Imaging Rep 10, 24 (2017). https://doi.org/10.1007/s12410-017-9419-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-017-9419-z

Keywords

Navigation