Advertisement

Biogerontology

, Volume 17, Issue 1, pp 147–157 | Cite as

From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation

  • T. FulopEmail author
  • G. Dupuis
  • S. Baehl
  • A. Le Page
  • K. Bourgade
  • E. Frost
  • J. M. Witkowski
  • G. Pawelec
  • A. Larbi
  • S. Cunnane
Review Article

Abstract

Aging is accompanied by many physiological changes including those in the immune system. These changes are designated as immunosenescence indicating that age induces a decrease in immune functions. However, since many years we know that some aspects are not decreasing but instead are increasing like the pro-inflammatory activity by the innate immune cells, especially by monocytes/macrophages. Recently it became evident that these cells may possess a sort of memory called trained memory sustained by epigenetic changes occurring long after even in the absence of the initiator aggressor. In this review we are reviewing evidences that such changes may occur in aging and describe the relationship between inflamm-aging and immunosenescence as an adaptation/remodelling process leading on one hand to increased inflammation and on the other to decreased immune response (immune-paralysis) mastered by the innate immune system. These changes may collectively induce a state of alertness which assure an immune response even if ultimately resulting in age-related deleterious inflammatory diseases.

Keywords

Ageing Innate immunity Adaptive immunity Alzheimer’s disease Hip fracture Inflamm-aging Epigenetic memory 

Notes

Acknowledgments

This work was partly supported by Grants from the Canadian Institutes of Health Research (CIHR) (Nos. 106634 and 106701), Canada Research Chairs (SCC) the Université de Sherbrooke, and the Research Center on Aging. Anis Larbi is funded by the Agency for Science Technology and Research.

References

  1. Bäckdahl L, Bushell A, Beck S (2009) Inflammatory signalling as mediator of epigenetic modulation in tissue-specific chronic inflammation. Int J Biochem Cell Biol 41:176–184CrossRefPubMedGoogle Scholar
  2. Baëhl S, Garneau H, Le Page A, Lorrain D, Viens I, Svotelis A, Lord JM, Phillips AC, Cabana F, Larbi A, Dupuis G, Fülöp T (2015) Altered neutrophil functions in elderly patients during a 6-month follow-up period after a hip fracture. Exp Gerontol 65:58–68CrossRefPubMedGoogle Scholar
  3. Bai S, Mao M, Tian L, Yu Y, Zeng J, Ouyang K, Yu L, Li L, Wang D, Deng X, Wei C, Luo Y (2015) Calcium sensing receptor mediated the excessive generation of β-amyloid peptide induced by hypoxia in vivo and in vitro. Biochem Biophys Res Commun 459:568–573CrossRefPubMedGoogle Scholar
  4. Bekkering S, Joosten LA, van der Meer JW, Netea MG, Riksen NP (2015) The epigenetic memory of monocytes and macrophages as a novel drug target in atherosclerosis. Clin Ther 37:914–923CrossRefPubMedGoogle Scholar
  5. Bourgade K, Garneau H, Giroux G, Le Page AY, Bocti C, Dupuis G, Frost EH, Fülöp T Jr (2015) β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology 16:85–98CrossRefPubMedGoogle Scholar
  6. Bruunsgaard H, Andersen-Ranberg K, Jeune B, Pedersen AN, Skinhøj P, Pedersen BK (1999) A high plasma concentration of TNF-alpha is associated with dementia in centenarians. J Gerontol A 54:M357–M364CrossRefGoogle Scholar
  7. Burton DGA, Krizhanovsky V (2014) Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci 71:4373–4386PubMedCentralCrossRefPubMedGoogle Scholar
  8. Castellano CA, Nugent S, Paquet N, Tremblay S, Bocti C, Lacombe G, Imbeault H, Turcotte É, Fulop T, Cunnane SC (2015) Lower brain 18F-fluorodeoxyglucose uptake but normal 11C-acetoacetate metabolism in mild Alzheimer’s disease dementia. J Alzheimers Dis 43:1343–1353PubMedGoogle Scholar
  9. Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, Manjeri GR, Li Y, Ifrim DC, Arts RJ, van der Veer BM, Deen PM, Logie C, O’Neill LA, Willems P, van de Veerdonk FL, van der Meer JW, Ng A, Joosten LA, Wijmenga C, Stunnenberg HG, Xavier RJ, Netea MG (2014) mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345:1250684PubMedCentralCrossRefPubMedGoogle Scholar
  10. Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F, Bocti C, Paquet N, Begdouri H, Bentourkia M, Turcotte E, Allard M, Barberger-Gateau P, Fulop T, Rapoport SI (2011) Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 27:3–20PubMedCentralCrossRefPubMedGoogle Scholar
  11. Dhanwal DK, Dennison EM, Harvey NC, Cooper C (2011) Epidemiology of hip fracture: worldwide geographic variation. Indian J Orthop 45:15–22PubMedCentralCrossRefPubMedGoogle Scholar
  12. Dorshkind K, Montecino-Rodriguez E, Signer RA (2009) The ageing immune system: is it ever too old to become young again? Nat Rev Immunol 9:57–62CrossRefPubMedGoogle Scholar
  13. Duggal NA, Beswetherick A, Upton J, Hampson P, Phillips AC, Lord JM (2014) Depressive symptoms in hip fracture patients are associated with reduced monocyte superoxide production. Exp Gerontol 54:27–34CrossRefPubMedGoogle Scholar
  14. Edwards C, Counsell A, Boulton C, Moran CG (2008) Early infection after hip fracture surgery. Risk factors, costs and outcome. J Bone Joint Surg 90B:770–777CrossRefGoogle Scholar
  15. Fiala M, Veerhuis R (2010) Biomarkers of inflammation and amyloid-beta phagocytosis in patients at risk of Alzheimer disease. Exp Gerontol 45:57–63PubMedCentralCrossRefPubMedGoogle Scholar
  16. Franceschi C, Monti D, Sansoni P, Cossarizza A (1995) The immunology of exceptional individuals: the lesson of centenarians. Immunol Today 16:12–16CrossRefPubMedGoogle Scholar
  17. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254CrossRefPubMedGoogle Scholar
  18. Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A (2014) Cellular signaling in the aging immune system. Curr Opin Immunol 29C:105–111CrossRefGoogle Scholar
  19. Fülöp T, Fortin C, Lesur O, Dupuis G, Kotb JR, Lord JM, Larbi A (2012) The innate immune system and aging: what is the contribution to immunosenescence? Open Longev Sci 6:121–132CrossRefGoogle Scholar
  20. Fülöp T, Larbi A, Pawelec G (2013) Human T cell aging and the impact of persistent viral infections. Front Immunol 13(4):271Google Scholar
  21. Furman D, Jojic V, Sharma S, Shen-Orr SS, Angel CJ, Onengut-Gumuscu S, Kidd BA, Maecker HT, Concannon P, Dekker CL, Thomas PG, Davis MM (2015) Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med 7:281CrossRefGoogle Scholar
  22. García-Alvarez F, González P, Navarro-Zorraquino M, Larrad L, García-Alvarez I, Pastor C, Lozano R (2008) Immune cell variations in patients with hip fracture. Arch Gerontol Geriatr 46:117–124CrossRefPubMedGoogle Scholar
  23. Giuliani N, Sansoni P, Girasole G, Vescovini R, Passeri G, Passeri M, Pedrazzoni M (2001) Serum interleukin-6, soluble interleukin-6 receptor and soluble gp130 exhibit different patterns of age- and menopause-related changes. Exp Gerontol 36:547–557CrossRefPubMedGoogle Scholar
  24. Giunta S (2008) Exploring the complex relations between inflammation and aging (inflamm-aging): anti-inflamm-aging remodelling of inflamm- aging, from robustness to frailty. Inflamm Res 57:558–563CrossRefPubMedGoogle Scholar
  25. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405CrossRefPubMedGoogle Scholar
  26. Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358–372CrossRefPubMedGoogle Scholar
  27. Jeong EA, Jeon BT, Shin HJ, Kim N, Lee DH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS (2011) Ketogenic diet-induced peroxisome proliferator-activated receptor-γ activation decreases neuroinflammation in the mouse hippocampus after kainic acid-induced seizures. Exp Neurol 232:195–202CrossRefPubMedGoogle Scholar
  28. Karsli-Ceppioglu S, Ngollo M, Adjakly M, Dagdemir A, Judes G, Lebert A, Boiteux JP, Penault-Llorca F, Bignon YJ, Guy L, Bernard-Gallon D (2015) Genome-wide DNA methylation modified by soy phytoestrogens: role for epigenetic therapeutics in prostate cancer? OMICS 19:209–219CrossRefPubMedGoogle Scholar
  29. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, Jacobs C, van Loenhout J, de Jong D, Stunnenberg HG, Xavier RJ, van der Meer JW, van Crevel R, Netea MG (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci USA 109:17537–17542PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kyburz D, Karouzakis E, Ospelt C (2014) Epigenetic changes: the missing link. Best Pract Res Clin Rheumatol 28:577–587CrossRefPubMedGoogle Scholar
  31. Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez PY, Benz CC, Kapahi P, Nelson PS, Campisi J (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17:1049–1061CrossRefPubMedGoogle Scholar
  32. Le Page A, Bourgade K, Lamoureux J, Frost E, Pawelec G, Larbi A, Witkowski JM, Dupuis G, Fülöp T (2015) NK cells are activated in amnestic mild cognitive impairment but not in mild Alzheimer’s disease patients. J Alzheimers Dis 46:93–107CrossRefPubMedGoogle Scholar
  33. Levy O, Netea MG (2014) Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines. Pediatr Res 75:184–188PubMedCentralCrossRefPubMedGoogle Scholar
  34. Meier J, Sturm A (2009) The intestinal epithelial barrier: does it become impaired with age? Dig Dis 27:240–245CrossRefPubMedGoogle Scholar
  35. Morrisette-Thomas V, Cohen AA, Fülöp T, Riesco É, Legault V, Li Q, Milot E, Dusseault-Bélanger F, Ferrucci L (2014) Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev 139:49–57CrossRefPubMedGoogle Scholar
  36. Netea MG, Quintin J, van der Meer JW (2011) Trained immunity: a memory for innate host defense. Cell Host Microbe 9:355–361CrossRefPubMedGoogle Scholar
  37. Netea MG, Latz E, Mills KH, O’Neill LA (2015) Innate immune memory: a paradigm shift in understanding host defense. Nat Immunol 16:675–679CrossRefPubMedGoogle Scholar
  38. Nugent S, Tremblay S, Chen KW, Ayutyanont N, Roontiva A, Castellano CA, Fortier M, Roy M, Courchesne-Loyer A, Bocti C, Lepage M, Turcotte E, Fulop T, Reiman EM, Cunnane SC (2014) Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiol Aging 35:1386–1395CrossRefPubMedGoogle Scholar
  39. Oppermann U (2013) Why is epigenetics important in understanding the pathogenesis of inflammatory musculoskeletal diseases? Arthritis Res Ther 15:209PubMedCentralCrossRefPubMedGoogle Scholar
  40. Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A, Bonifacio S, Curina A, Prosperini E, Ghisletti S, Natoli G (2013) Latent enhancers activated by stimulation in differentiated cells. Cell 152:157–171CrossRefPubMedGoogle Scholar
  41. Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, Lord JM, Shaw AC (2009) Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 30:325–333PubMedCentralCrossRefPubMedGoogle Scholar
  42. Paolisso G, Barbieri M, Bonafè M, Franceschi C (2000) Metabolic age modelling: the lesson from centenarians. Eur J Clin Invest 30:888–894CrossRefPubMedGoogle Scholar
  43. Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 19:47–56CrossRefPubMedGoogle Scholar
  44. Petrus E, Lee HK (2014) BACE1 is necessary for experience-dependent homeostatic synaptic plasticity in visual cortex. Neural Plast 2014:128631PubMedCentralPubMedGoogle Scholar
  45. Pimplikar SW (2014) Neuroinflammation in Alzheimer’s disease: from pathogenesis to a therapeutic target. J Clin Immunol 34(Suppl 1):S64–S69CrossRefPubMedGoogle Scholar
  46. Pinti M, Cevenini E, Nasi M, De Biasi S, Salvioli S, Monti D, Benatti S, Gibellini L, Cotichini R, Stazi MA, Trenti T, Franceschi C, Cossarizza A (2014) Circulating mitochondrial DNA increases with age and is a familiar trait: implications for “inflamm-aging”. Eur J Immunol 44:1552–1562CrossRefPubMedGoogle Scholar
  47. Quintin J, Saeed S, Martens JH, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, Jacobs L, Jansen T, Kullberg BJ, Wijmenga C, Joosten LA, Xavier RJ, van der Meer JW, Stunnenberg HG, Netea MG (2012) Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12:223–232CrossRefPubMedGoogle Scholar
  48. Rice C (2014) As drug trials fail, Alzheimer’s researchers look toward prevention. Mod Healthc 44:8–9Google Scholar
  49. Roche JJ, Wenn RT, Sahota O, Moran CG (2005) Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: prospective observational cohort study. Br Med J 331:1374–1378CrossRefGoogle Scholar
  50. Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, van der Ent MA, Sharifi N, Janssen-Megens EM, Ter-Huurne M, Mandoli A, van Schaik T, Ng A, Burden F, Downes K, Frontini M, Kumar V, Giamarellos-Bourboulis EJ, Ouwehand WH, van der Meer JW, Joosten LA, Wijmenga C, Martens JH, Xavier RJ, Logie C, Netea MG, Stunnenberg HG (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345:1251086PubMedCentralCrossRefPubMedGoogle Scholar
  51. Salvioli S, Monti D, Lanzarini C, Conte M, Pirazzini C, Bacalini MG, Garagnani P, Giuliani C, Fontanesi E, Ostan R, Bucci L, Sevini F, Yani SL, Barbieri A, Lomartire L, Borelli V, Vianello D, Bellavista E, Martucci M, Cevenini E, Pini E, Scurti M, Biondi F, Santoro A, Capri M, Franceschi C (2013) Immune system, cell senescence, aging and longevity–inflamm-aging reappraised. Curr Pharm Des 19:1675–1679PubMedGoogle Scholar
  52. Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13:875–887PubMedCentralCrossRefPubMedGoogle Scholar
  53. Shoemark DK, Allen SJ (2015) The microbiome and disease: reviewing the links between the oral microbiome, aging, and Alzheimer’s disease. J Alzheimers Dis 43:725–738PubMedGoogle Scholar
  54. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (2012) Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 24:331–341CrossRefPubMedGoogle Scholar
  55. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 5:e9505PubMedCentralCrossRefPubMedGoogle Scholar
  56. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–972PubMedCentralCrossRefPubMedGoogle Scholar
  57. Valentini L, Ramminger S, Haas V, Postrach E, Werich M, Fischer A, Koller M, Swidsinski A, Bereswill S, Lochs H, Schulzke JD (2014) Small intestinal permeability in older adults. Physiol Rep 2:e00281PubMedCentralCrossRefPubMedGoogle Scholar
  58. Van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446PubMedCentralCrossRefPubMedGoogle Scholar
  59. Vanasse A, Orzanco MG, Dagenais P, Ouarda T, Courteau J, Asghari S, Chebana F, Martel B, Gosselin P (2012) Secular trends of hip fractures in Quebec, Canada. Osteoporos Int 23:1665–1672CrossRefPubMedGoogle Scholar
  60. Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL, Bowdish DM (2013) Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 93:633–637PubMedCentralCrossRefPubMedGoogle Scholar
  61. Vlassenko AG, Vaishnavi SN, Couture L, Sacco D, Shannon BJ, Mach RH, Morris JC, Raichle ME, Mintun MA (2010) Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition. Proc Natl Acad Sci USA 107:17763–17767PubMedCentralCrossRefPubMedGoogle Scholar
  62. Wang YJ (2014) Alzheimer disease: lessons from immunotherapy for Alzheimer disease. Nat Rev Neurol 10:188–189CrossRefPubMedGoogle Scholar
  63. White MR, Kandel R, Tripathi S, Condon D, Taubenberger J, Hartshorn KL (2014) Alzheimer’s associated β-amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes. PLoS One 9:e101364PubMedCentralCrossRefPubMedGoogle Scholar
  64. Xiu F, Jeschke MG (2013) Perturbed mononuclear phagocyte system in severely burned and septic patients. Shock 40:81–88PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • T. Fulop
    • 1
    • 8
    Email author
  • G. Dupuis
    • 2
  • S. Baehl
    • 1
  • A. Le Page
    • 1
  • K. Bourgade
    • 1
  • E. Frost
    • 3
  • J. M. Witkowski
    • 4
  • G. Pawelec
    • 5
  • A. Larbi
    • 6
  • S. Cunnane
    • 7
  1. 1.Immunology Programme, Division of Geriatrics, Department of Medicine, Research Center on AgingUniversity of SherbrookeSherbrookeCanada
  2. 2.Immunology Programme, Department of Biochemistry, Faculty of Medicine and Health SciencesUniversity of SherbrookeSherbrookeCanada
  3. 3.Department of Infectiology and MicrobiologyUniversity of SherbrookeSherbrookeCanada
  4. 4.Department of PathophysiologyMedical University of GdańskGdańskPoland
  5. 5.Center for Medical ResearchUniversity of TübingenTübingenGermany
  6. 6.Singapore Immunology Network (SIgN), BiopolisAgency for Science Technology and Research (A*STAR)SingaporeSingapore
  7. 7.Division of Endocrinology, Department of Medicine, Research Center on AgingUniversity of SherbrookeSherbrookeCanada
  8. 8.Geriatrics Division, Department of Medicine, Research Center on AgingUniversité de SherbrookeSherbrookeCanada

Personalised recommendations