Skip to main content

Immunological Changes

  • Chapter
  • First Online:
The Very Old Critically Ill Patients

Part of the book series: Lessons from the ICU ((LEICU))

  • 745 Accesses

Abstract

Aging is associated with numerous physiological changes, including those affecting the immune response. It is now well accepted that both the innate and the adaptive immune responses are changing with aging. The phenotypes and the functions of the immune cells are impacted at various degrees with aging. Collectively these changes are called immunosenescence which is tightly associated with inflammaging. The interest in the study of the immune function changes with aging is related to the concept that immune alterations underlie most of the age-related chronic diseases. However, nowadays, this relationship is more nuanced as not all changes related to aging in the immune system may be considered as detrimental. Many processes may be considered either adaptive or maladaptive. In this chapter we will discuss the lifelong changes in the immune response and also highlight the differential changes in regard to the immunobiography. Furthermore, the contribution of the aging immune system to critical diseases in the older subjects will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghachem A, Fried LP, Legault V, Bandeen-Roche K, Presse N, Gaudreau P, Cohen AA. Evidence from two cohorts for the frailty syndrome as an emergent state of parallel dysregulation in multiple physiological systems. Biogerontology. 2021;22:63–79.

    Article  PubMed  Google Scholar 

  2. Pawelec G, Bronikowski A, Cunnane SC, Ferrucci L, Franceschi C, Fülöp T, Gaudreau P, Gladyshev VN, Gonos ES, Gorbunova V, Kennedy BK, Larbi A, Lemaître JF, Liu GH, Maier AB, Morais JA, Nóbrega OT, Moskalev A, Rikkert MO, Seluanov A, Senior AM, Ukraintseva S, Vanhaelen Q, Witkowski J, Cohen AA. The conundrum of human immune system "senescence". Mech Ageing Dev. 2020;192:111357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Müller L, Di Benedetto S, Pawelec G. The immune system and its dysregulation with aging. Subcell Biochem. 2019;91:21–43.

    Article  PubMed  CAS  Google Scholar 

  5. Fülöp T, Dupuis G, Witkowski JM, Larbi A. The role of immunosenescence in the development of age-related diseases. Rev Investig Clin. 2016;68:84–91.

    Google Scholar 

  6. Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M. Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front Immunol. 2017;8:982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. McComb S, Thiriot A, Akache B, Krishnan L, Stark F. Introduction to the immune system. Methods Mol Biol. 2019;2024:1–24.

    Article  CAS  PubMed  Google Scholar 

  8. Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol. 2020;42:521–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu Z, Mc Googan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–42.

    Article  CAS  PubMed  Google Scholar 

  10. Paces J, Strizova Z, Smrz D, Cerny J. COVID-19 and the immune system. Physiol Res. 2020;69:379–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2018;8:1960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol. 1997;9:4–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kennedy MA. A brief review of the basics of immunology: the innate and adaptive response. Vet Clin North Am Small Anim Pract. 2010;40:369–79.

    Article  PubMed  Google Scholar 

  14. Kaufmann SHE, Dorhoi A. Molecular determinants in phagocyte-bacteria interactions. Immunity. 2016;44:476–91.

    Article  CAS  PubMed  Google Scholar 

  15. Vidya MK, Kumar VG, Sejian V, Bagath M, Krishnan G, Bhatta R. Toll-like receptors: significance, ligands, signaling pathways, and functions in mammals. Int Rev Immunol. 2018;37:20–36.

    Article  CAS  PubMed  Google Scholar 

  16. Kufer TA, Nigro G, Sansonetti PJ. Multifaceted functions of NOD-like receptor proteins in myeloid cells at the intersection of innate and adaptive immunity. Microbiol Spectr. 2016;4(4)

    Google Scholar 

  17. Barik S. What really rigs up RIG-I? J Innate Immun. 2016;8:429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu W, Wong G, Hwang YY, Larbi A. The untwining of immunosenescence and aging. Semin Immunopathol. 2020;42:559–72.

    Article  PubMed  PubMed Central  Google Scholar 

  19. De la Fuente M. Where could research on immunosenescence lead? Int J Mol Sci. 2019;20:5906.

    Article  PubMed Central  Google Scholar 

  20. Bajaj V, Gadi N, Spihlman AP, Wu SC, Choi CH, Moulton VR. Aging, immunity, and COVID-19: how age influences the host immune response to coronavirus infections? Front Physiol. 2021;11:571416.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and “garb-aging”. Trends Endocrinol Metab. 2017;28:199–212.

    Article  CAS  PubMed  Google Scholar 

  22. Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A. Cellular signaling in the aging immune system. Curr Opin Immunol. 2014;29:105–11.

    Article  CAS  PubMed  Google Scholar 

  23. Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180:1044–66.

    Article  CAS  PubMed  Google Scholar 

  24. Moskalev A, Stambler I, Caruso C. Innate and adaptive immunity in aging and longevity: the Foundation of Resilience. Aging Dis. 2020;11:1363–73.

    Article  PubMed  PubMed Central  Google Scholar 

  25. De Maeyer RPH, Chambers ES. The impact of ageing on monocytes and macrophages. Immunol Lett. 2021;230:1–10.

    Article  PubMed  CAS  Google Scholar 

  26. Blagosklonny MV. From causes of aging to death from COVID-19. Aging (Albany NY). 2020;12:10004–21.

    Article  Google Scholar 

  27. Zheng Y, Liu X, Le W, Xie L, Li H, Wen W, Wang S, Ma S, Huang Z, Ye J, Shi W, Ye Y, Liu Z, Song M, Zhang W, Han JJ, Belmonte JCI, Xiao C, Qu J, Wang H, Liu GH, Su W. A human circulating immune cell landscape in aging and COVID-19. Protein Cell. 2020;11:740–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Golubev AG. COVID-19: a challenge to physiology of aging. Front Physiol. 2020;11:584248.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Channappanavar R, Perlman S. Age-related susceptibility to coronavirus infections: role of impaired and dysregulated host immunity. J Clin Invest. 2020;130:6204–13.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bandaranayake T, Shaw AC. Host resistance and immune aging. Clin Geriatr Med. 2016;32:415–32.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Omarjee L, Perrot F, Meilhac O, Mahe G, Bousquet G, Janin A. Immunometabolism at the cornerstone of inflammaging, immunosenescence, and autoimmunity in COVID-19. Aging (Albany NY). 2020;12:26263–78.

    Article  Google Scholar 

  32. Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S. From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology. 2016;1:147–57; Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, Riksen NP, Schlitzer A, Schultze JL, Stabell Benn C, Sun JC, Xavier RJ, Latz E. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20:375–88.

    Article  CAS  Google Scholar 

  33. Fulop T, Larbi A, Douziech N, Fortin C, Guérard KP, Lesur O, Khalil A, Dupuis G. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004;3:217–26.

    Article  CAS  PubMed  Google Scholar 

  34. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  35. Monti D, Ostan R, Borelli V, Castellani G, Franceschi C. Inflammaging and human longevity in the omics era. Mech Ageing Dev. 2017;165(Pt B):129–38.

    Article  PubMed  Google Scholar 

  36. Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol. 2018;40:17–35.

    Article  CAS  PubMed  Google Scholar 

  37. Barbé-Tuana F, Funchal G, Schmitz CRR, Maurmann RM, Bauer ME. The interplay between immunosenescence and age-related diseases. Semin Immunopathol. 2020;42:545–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Le Page A, Dupuis G, Frost EH, Larbi A, Pawelec G, Witkowski JM, Fulop T. Role of the peripheral innate immune system in the development of Alzheimer’s disease. Exp Gerontol. 2018;107:59–66.

    Article  PubMed  CAS  Google Scholar 

  39. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, Pia L, Risson E, Saffern M, Salomé B, Esai Selvan M, Spindler MP, Tan J, van der Heide V, Gregory JK, Alexandropoulos K, Bhardwaj N, Brown BD, Greenbaum B, Gümüş ZH, Homann D, Horowitz A, Kamphorst AO, Curotto de Lafaille MA, Mehandru S, Merad M, Samstein RM, Sinai Immunology Review Project. Immunology of COVID-19: current state of the science. Immunity. 2020;52:910–41.

    Google Scholar 

  40. Nikolich-Zugich J, Knox KS, Rios CT, Natt B, Bhattacharya D, Fain MJ. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. Geroscience. 2020;42:505–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hazeldine J, Lord JM. Immunesenescence: a predisposing risk factor for the development of COVID-19? Front Immunol. 2020;11:573662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV. Remodeling of the immune response with aging: immunosenescence and its potential impact on COVID-19 immune response. Front Immunol. 2020;11:1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY). 2020;12:9959–81.

    Article  CAS  Google Scholar 

  44. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012;24:331–41.

    Article  CAS  PubMed  Google Scholar 

  45. Fülöp T, Fóris G, Leövey A. Age-related changes in cAMP and cGMP levels during phagocytosis in human polymorphonuclear leukocytes. Mech Ageing Dev. 1984;27:233–7.

    Article  PubMed  Google Scholar 

  46. Metcalf TU, Wilkinson PA, Cameron MJ, Ghneim K, Chiang C, Wertheimer AM, Hiscott JB, Nikolich-Zugich J, Haddad EK. Human monocyte subsets are transcriptionally and functionally altered in aging in response to pattern recognition receptor agonists. J Immunol. 2017;199:1405–17.

    Article  CAS  PubMed  Google Scholar 

  47. Poulin LF, Lasseaux C, Chamaillard M. Understanding the cellular origin of the mononuclear phagocyte system sheds light on the myeloid postulate of immune paralysis in sepsis. Front Immunol. 2018;9:823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Tarazona R, Campos C, Pera A, Sanchez-Correa B, Solana R. Flow cytometry analysis of NK cell phenotype and function in aging. Methods Mol Biol. 2015;1343:9–18.

    Article  CAS  PubMed  Google Scholar 

  49. Agrawal A, Agrawal S, Gupta S. Role of dendritic cells in inflammation and loss of tolerance in the elderly. Front Immunol. 2017;8:896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Johnston-Carey HK, Pomatto LC, Davies KJ. The immunoproteasome in oxidative stress, aging, and disease. Crit Rev Biochem Mol Biol. 2015;51:268–81.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang H, Weyand CM, Goronzy JJ. Hallmarks of the aging T-cell system. FEBS J. 2021;

    Google Scholar 

  52. Pawelec G. Does the human immune system ever really become "senescent"? F1000Res. 2017;6. pii: F1000 Faculty Rev-1323.

    Google Scholar 

  53. Effros RB, Dagarag M, Spaulding C, Man J. The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev. 2005;205:147–57.

    Article  CAS  PubMed  Google Scholar 

  54. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thomas R, Wang W, Su DM. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing. 2020;17:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Goronzy JJ, Weyand CM. Successful and maladaptive T cell aging. Immunity. 2017;46:364–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pawelec G. Immunosenenescence: role of cytomegalovirus. Exp Gerontol. 2014;54:1–5.

    Article  CAS  PubMed  Google Scholar 

  58. Minato N, Hattori M, Hamazaki Y. Physiology and pathology of T-cell aging. Int Immunol. 2020;32:223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moskowitz DM, Zhang DW, Hu B, Le Saux S, Yanes RE, Ye Z, Buenrostro JD, Weyand CM, Greenleaf WJ, Goronzy JJ. Epigenomics of human CD8 T cell differentiation and aging. Sci Immunol. 2017;2:eaag0192.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kugel S, Mostoslavsky R. Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem Sci. 2014;39:72–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Horvath S, Pirazzini C, Bacalini MG, Gentilini D, Di Blasio AM, Delledonne M, Mari D, Arosio B, Monti D, Passarino G, De Rango F, D’Aquila P, Giuliani C, Marasco E, Collino S, Descombes P, Garagnani P, Franceschi C. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY). 2015;7:1159–70.

    Article  CAS  Google Scholar 

  62. Goel N, Karir P, Garg VK. Role of DNA methylation in human age prediction. Mech Ageing Dev. 2017;166:33–41.

    Article  CAS  PubMed  Google Scholar 

  63. Li G, Yu M, Lee WW, Tsang M, Krishnan E, Weyand CM, Goronzy JJ. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med. 2012;18:1518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Le Page A, Fortin C, Garneau H, Allard N, Tsvetkova K, Tan CT, Larbi A, Dupuis G, Fülöp T. Downregulation of inhibitory SRC homology 2 domain-containing phosphatase-1 (SHP-1) leads to recovery of T cell responses in elderly. Cell Commun Signal. 2014;12:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Larbi A, Dupuis G, Khalil A, Douziech N, Fortin C, Fülöp T Jr. Differential role of lipid rafts in the functions of CD4+ and CD8+ human T lymphocytes with aging. Cell Signal. 2006;18:1017–30.

    Article  CAS  PubMed  Google Scholar 

  66. Frasca D. Senescent B cells in aging and age-related diseases: their role in the regulation of antibody responses. Exp Gerontol. 2018;107:55–8.

    Article  CAS  PubMed  Google Scholar 

  67. Hagen M, Derudder E. Inflammation and the alteration of B-cell physiology in aging. Gerontology. 2020;66:105–13.

    Article  CAS  PubMed  Google Scholar 

  68. Bektas A, Zhang Y, Wood WH 3rd, Becker KG, Madara K, Ferrucci L, Sen R. Age-associated alterations in inducible gene transcription in human CD4+ T lymphocytes. Aging (Albany NY). 2013;5:18–36.

    Article  CAS  Google Scholar 

  69. He W, Xiao K, Fang M, Xie L. Immune cell number, phenotype, and function in the elderly with sepsis. Aging Dis. 2021;12:277–96.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fülöp T, Larbi A, Witkowski JM. Human inflammaging. Gerontology. 2019;65:495–504.

    Article  PubMed  Google Scholar 

  71. Callender LA, Carroll EC, Beal RWJ, Chambers ES, Nourshargh S, Akbar AN, Henson SM. Human CD8 + EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell. 2018;17:e12675.

    Article  CAS  Google Scholar 

  72. Santoro A, Zhao J, Wu L, Carru C, Biagi E, Franceschi C. Microbiomes other than the gut: inflammaging and age-related diseases. Semin Immunopathol. 2020;42:589–605.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P. Aging of the human metaorganism: the microbial counterpart. Age (Dordr). 2012;34:247–67.

    Article  Google Scholar 

  74. Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M. Gut microbiota and extreme longevity. Curr Biol. 2016;26:1480–5.

    Article  CAS  PubMed  Google Scholar 

  75. Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010;465:885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vizioli MG, Liu T, Miller KN, Robertson NA, Gilroy K, Lagnado AB, Perez-Garcia A, Kiourtis C, Dasgupta N, Lei X, Kruger PJ, Nixon C, Clark W, Jurk D, Bird TG, Passos JF, Berger SL, Dou Z, Adams PD. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 2020;34:428–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lan YY, Heather JM, Eisenhaure T, Garris CS, Lieb D, Raychowdhury R, Hacohen N. Extranuclear DNA accumulates in aged cells and contributes to senescence and inflammation. Aging Cell. 2019;18:e12901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20:3328.

    Article  CAS  PubMed Central  Google Scholar 

  79. He M, Chiang HH, Luo H, Zheng Z, Qiao Q, Wang L, Tan M, Ohkubo R, Mu WC, Zhao S, Wu H, Chen D. An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab. 2020;31:580–591.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One. 2012;7:e42357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, Suematsu M, Hirose N, von Zglinicki T. Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine. 2015;2:1549–58.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92–105.

    Article  CAS  PubMed  Google Scholar 

  83. Morrisette-Thomas V, Cohen AA, Fülöp T, Riesco É, Legault V, Li Q, Milot E, Dusseault-Bélanger F, Ferrucci L. Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev. 2014;139:49–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM, Li T, Margolick JB, Pawelec G, Leng SX. Aging in COVID-19: vulnerability, immunity and intervention. Ageing Res Rev. 2021;65:101205.

    Article  CAS  PubMed  Google Scholar 

  85. Vetter P, Eberhardt CS, Meyer B, Martinez Murillo PA, Torriani G, Pigny F, Lemeille S, Cordey S, Laubscher F, Vu DL, Calame A, Schibler M, Jacquerioz F, Blanchard-Rohner G, Siegrist CA, Kaiser L, Didierlaurent AM, Eckerle I. Daily viral kinetics and innate and adaptive immune response assessment in COVID-19: a case series. mSphere. 2020;5:e00827-20.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, Belanger S, Abbott RK, Kim C, Choi J, Kato Y, Crotty EG, Kim C, Rawlings SA, Mateus J, Tse LPV, Frazier A, Baric R, Peters B, Greenbaum J, Ollmann Saphire E, Smith DM, Sette A, Crotty S. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and ssociations with age and disease severity. Cell. 2020;183:996–1012.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shi CS, Nabar NR, Huang NN, Kehrl JH. SARS-coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov. 2019;5:101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Pence BD. Severe COVID-19 and aging: are monocytes the key? Geroscience. 2020;42:1051–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rowe TA, McKoy JM. Sepsis in older adults. Infect Dis Clin N Am. 2017;31:731–42.

    Article  Google Scholar 

  90. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, Deutschman CS, Escobar GJ, Angus DC. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:762–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martín S, Pérez A, Aldecoa C. Sepsis and immunosenescence in the elderly patient: a review. Front Med (Lausanne). 2017;4:20.

    Google Scholar 

  92. Monneret G, Gossez M, Venet F. Sepsis and immunosenescence: closely associated in a vicious circle. Aging Clin Exp Res. 2021;33:729–32.

    Article  PubMed  Google Scholar 

  93. Faivre V, Lukaszewicz AC, Alves A, Charron D, Payen D, Haziot A. Human monocytes differentiate into dendritic cells subsets that induce anergic and regulatory T cells in sepsis. PLoS One. 2012;7:e47209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cazalis MA, Friggeri A, Cavé L, Demaret J, Barbalat V, Cerrato E, Lepape A, Pachot A, Monneret G, Venet F. Decreased HLA-DR antigen-associated invariant chain (CD74) mRNA expression predicts mortality after septic shock. Crit Care. 2013;17:R287.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kjaergaard AG, Nielsen JS, Tønnesen E, Krog J. Expression of NK cell and monocyte receptors in critically ill patients–potential biomarkers of sepsis. Scand J Immunol. 2015;81:249–58.

    Article  CAS  PubMed  Google Scholar 

  96. Guo Y, Patil NK, Luan L, Bohannon JK, Sherwood ER. The biology of natural killer cells during sepsis. Immunology. 2018;153:190–202.

    Article  CAS  PubMed  Google Scholar 

  97. Aziz M, Yang WL, Matsuo S, Sharma A, Zhou M, Wang P. Upregulation of GRAIL is associated with impaired CD4 T cell proliferation in sepsis. J Immunol. 2014;192:2305–14.

    Article  CAS  PubMed  Google Scholar 

  98. Boomer JS, Shuherk-Shaffer J, Hotchkiss RS, Green JM. A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Crit Care. 2012;16:R112.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Condotta SA, Khan SH, Rai D, Griffith TS, Badovinac VP. Polymicrobial sepsis increases susceptibility to chronic viral infection and exacerbates CD8+ T cell exhaustion. J Immunol. 2015;195:116–25.

    Article  CAS  PubMed  Google Scholar 

  100. Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 2016;274:330–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Alberro A, Osorio-Querejeta I, Sepúlveda L, Fernández-Eulate G, Mateo-Abad M, Muñoz-Culla M, Carregal-Romero S, Matheu A, Vergara I, López de Munain A, Sáenz-Cuesta M, Otaegui D. T cells and immune functions of plasma extracellular vesicles are differentially modulated from adults to centenarians. Aging (Albany NY). 2019;11:10723–41.

    Article  CAS  Google Scholar 

  102. Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38:329–56.

    Article  CAS  PubMed  Google Scholar 

  103. Fulop T, Larbi A, Khalil A, Cohen AA, Witkowski JM. Are we ill because we age? Front Physiol. 2019;10:1508.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sansoni P, Vescovini R, Fagnoni F, Biasini C, Zanni F, Zanlari L, Telera A, Lucchini G, Passeri G, Monti D, Franceschi C, Passeri M. The immune system in extreme longevity. Exp Gerontol. 2008;43:61–5.

    Article  CAS  PubMed  Google Scholar 

  105. Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, Morabito N, Lasco A, Gangemi S, Basile G. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp. 2016;64:111–26.

    Article  CAS  Google Scholar 

  106. Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S. The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne). 2018;5:61.

    Article  Google Scholar 

  107. Lal H, Cunningham AL, Godeaux O, Chlibek R, Diez-Domingo J, Hwang SJ, Levin MJ, McElhaney JE, Poder A, Puig-Barberà J, Vesikari T, Watanabe D, Weckx L, Zahaf T, Heineman TC, ZOE-50 Study Group. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med. 2015;372:2087–96.

    Article  PubMed  Google Scholar 

  108. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, Bailey R, Swanson KA, Roychoudhury S, Koury K, Li P, Kalina WV, Cooper D, Frenck RW Jr, Hammitt LL, Türeci Ö, Nell H, Schaefer A, Ünal S, Tresnan DB, Mather S, Dormitzer PR, Şahin U, Jansen KU, Gruber WC, C4591001 Clinical Trial Group. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020;383:2603–15.

    Google Scholar 

  109. Walsh EE, Frenck RW Jr, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, Swanson KA, Li P, Koury K, Kalina W, Cooper D, Fontes-Garfias C, Shi PY, Türeci Ö, Tompkins KR, Lyke KE, Raabe V, Dormitzer PR, Jansen KU, Şahin U, Gruber WC. Safety and immunogenicity of two RNA-based covid-19 vaccine candidates. N Engl J Med. 2020;383:2439–50.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Canadian Institutes of Health Research (CIHR) (No. 106634), the Société des Médecins de l’Université de Sherbrooke, and the Research Center on Aging of the CIUSSS-CHUS, Sherbrooke, by the Polish Ministry of Science and Higher Education statutory grant 02-0058/07/262 to JMW, and by the Agency for Science Technology and Research (A*STAR) to AL; AAC is a CIHR New Investigator and member of the FRQS-supported Research Center on Aging and CHUS Research Center.

Conflict of Interest

The authors declare that they have no conflict of interest, except AAC, who is Founder and Chief Scientific Officer at Oken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas Fulop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fulop, T., Larbi, A., Khalil, A., Hirokawa, K., Cohen, A.A., Witkowski, J.M. (2022). Immunological Changes. In: Flaatten, H., Guidet, B., Vallet, H. (eds) The Very Old Critically Ill Patients. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-030-94133-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94133-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94132-1

  • Online ISBN: 978-3-030-94133-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics