Skip to main content
Log in

Pseudomonas sesami sp. nov., a plant growth-promoting Gammaproteobacteria isolated from the rhizosphere of Sesamum indicum L.

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel Gram-stain negative, aerobic, motile, rod-shaped bacterium was isolated from Sesame (Sesamum indicum L.) rhizosphere soil. Based on the 16S rRNA gene similarity value (99.4–98.6%) obtained with phylogenetically closely related strains and through analyses of their house keeping genes (atpD, infB and rpoB), the strain SI-P133T was delineated among the species of the genus Pseudomonas and was subjected to polyphasic taxonomic analysis. It was a chemoorganotroph which grew at wide range of temperature (4–45 °C), pH (5.5–9.5) and NaCl concentrations (0–7% (w/v). DNA–DNA hybridization values with closely related type strains DSM 9751T, DSM 19095T, DSM 21509T, ICMP 9151T and DSM 6929T ranged from 23.1 to 44.2%. The most abundant fatty acids were C16:0, C10:0 3-OH, summed feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c), C17:0 cyclo and C12:0 3-OH. The major isoprenoid quinone system was ubiquinone 9 (Q-9) and the G+C content was 61.3 mol%. The major polar lipids of the strain SI-P133T were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. With regard to prospective use in agriculture, plant growth-promoting properties of the strain were tested and plant growth-promotion was demonstrated under in vitro conditions. Based on the various polyphasic taxonomic traits analysed, the strain SI-P-133T was novel and placed within the genus Pseudomonas. Hence we propose a novel species named Pseudomonas sesami sp. nov., for which the type strain is SI-P133T (=NCIMB 14519T = KCTC 22518T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baldani JI, Reis VM, Videira SS, Boddey LH, Baldani VLD (2014) The art of isolating nitrogen fixing bacteria from non-leguminous plant using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384:413–431

    Article  CAS  Google Scholar 

  • Brady C, Cleenwerck I, Venter S, Vancanneyt M, Swings J, Coutinho T (2008) Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol 31:447–460

    Article  CAS  PubMed  Google Scholar 

  • Cashion P, Hodler-Franklin MA, McCully J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  CAS  PubMed  Google Scholar 

  • Cochran WG (1950) Estimation of bacterial densities by means of the “Most Probable Number”. Biometrics 6:105–116

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmer JC, Lester RL (1964) A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 5:126–127

    CAS  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a Maximum Likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Gardan L, Shafik H, Belouin S, Broch R, Grimont F, Grimonth PAD (1999) DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Sys Evol Microbiol 49:469–478

    CAS  Google Scholar 

  • Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Sys Evol Microbiol 64:346–351

    Article  CAS  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP 18) and a silver loaded ion exchanger as stationery phases. J Liq Chromatogr 5:2359–2367

    Article  CAS  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, Shaffer BT et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits Involved in multitrophic interactions. PLoS Genet 8:e1002784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu JH, Sa TM (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris). Planta 226:867–876

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM (2009) Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int J Syst Bacteriol 59:22–27

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Senthilkumar M, Pragatheswari D, Lee KC, Lee JS (2013) Methylobacillus rhizosphaerae sp. nov., a novel plant-associated methylotrophic bacterium isolated from rhizosphere of red pepper. Antonie Van Leeuwenhoek 103:475–484

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Martinko JM, Stahl DA, Clark DP (2012) Brock biology of microorganisms, 13th edn. Pearson-Benjamin Cummings, San Francisco

    Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Migula W (1894) Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–238

    Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Palleroni NJ (2004) Genus I. Pseudomonas. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) The Proteobacteria: Part –B, The Gammaproteobacteria, vol 2, 2nd edn. Springer, New York

    Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 257–270

    Chapter  Google Scholar 

  • Parte AC (2014) LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa TM (2006) Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp. Pekinensis and screening of potential plant growth promoting bacteria. Plant Soil 286:167–180

    Article  CAS  Google Scholar 

  • Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B 359:907–918

    Article  CAS  Google Scholar 

  • Ross HNM, Grant WD, Harris JE (1985) Lipids in archaebacterial taxonomy. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 289–300

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (2001) (revised) Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note# 101, MIDI, Inc., Newark

  • Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Sys Evol Microbiol 44:846–849

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International committee on systematic bacteriology. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Wilson K (1997) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 241–245

    Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001755

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Professor Jean Euzéby for the support in the Latin etymology of the new species name. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group project No RGP-213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munusamy Madhaiyan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2053 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhaiyan, M., Poonguzhali, S., Saravanan, V.S. et al. Pseudomonas sesami sp. nov., a plant growth-promoting Gammaproteobacteria isolated from the rhizosphere of Sesamum indicum L.. Antonie van Leeuwenhoek 110, 843–852 (2017). https://doi.org/10.1007/s10482-017-0859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0859-x

Keywords

Navigation