Skip to main content
Log in

Metabacillus rhizolycopersici sp. nov., Isolated from the Rhizosphere Soil of Tomato Plants

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-positive, endospore-forming, rod-shaped and aerobic bacterium, with swarming and swimming motility, designated strain DBTR6T, was isolated from the rhizosphere soil of tomato plants. Strain DBTR6T grew at 20–45 ℃ (optimum 30–37℃), pH 4–9 (optimum 7–8) and at salinities from 0 to 5% (optimum 1%). Phylogenetic analysis using 16S rRNA gene sequences showed this strain belonged to the genus Metabacillus and was most closely related to Metabacillus litoralis DSM 16303 T (98.3%) and Metabacillus sediminilitoris MCCC 1K03777T (98.3%). The DNA G + C content of the genomic DNA was 36.4%. The digital DNA–DNA hybridization value between strain DBTR6T and reference strains M. sediminilitoris MCCC 1K03777T and “M. bambusae” BG109T were less than 70% (26.7% and 26.0%), and the average nucleotide identity score were less than 95% (78.55% and 78.38%), and the Amino Acid Identity values calculated were less than 96% (79.99% and 80.18%), respectively, suggesting that strain DBTR6T represented a novel species in the genus Metabacillus. Chemotaxonomic analysis showed that strain DBTR6T contained MK-7 as the major respiratory quinone. The predominant fatty acids (> 10.0%) were iso-C15:0, anteiso-C15:0 and C16:0. The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), glycolipids (GL) and three unidentified lipids (L). Based on the differential physiological properties, biochemical characteristics and genotypic data, strain DBTR6T represents a novel species of the genus Metabacillus, for which the name Metabacillus rhizolycopersici sp. nov. is proposed. The type strain is DBTR6T (= ACCC 61900 T = JCM 35080 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANI:

Average nucleotide identity

DDH:

DNA–DNA hybridization

GGDC:

Genome-to-Genome Distance Calculator

TSA:

Tryptic Soy Agar

R2A:

Reasoner’s 2A

NJ:

Neighbor joining

ML:

Maximum likelihood

MP:

Maximun parsimony

HPLC:

High-performance liquid chromatography

TLC:

Thin-layer chromatography

References

  1. Kim SJ, Ahn JH, Weon HY, Joa JH, Hong SB, Seok SJ, Kim JS, Kwon SW (2017) Lysobacter solanacearum sp. nov., Isolated from rhizosphere of tomato. Int J Syst Evol Microbiol 67(5):1102–1106. https://doi.org/10.1099/ijsem.0.001729

    Article  CAS  PubMed  Google Scholar 

  2. Ngo H, Kook M, Yi TH (2015) Pedobacter ureilyticus sp. nov., Isolated from tomato rhizosphere soil. Int J Syst Evol Microbiol 65:1008–1014. https://doi.org/10.1099/ijs.0.000055

    Article  CAS  PubMed  Google Scholar 

  3. Timilsina S, Minsavage GV, Preston J, Newberry EA, Vallad GE (2018) Pseudomonas floridensis sp. nov., A bacterial pathogen isolated from tomato. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.002445

    Article  PubMed  Google Scholar 

  4. Won K, Singh H, Ngo HTT, Son H, Kook M, Kim K, Yi T (2015) Rhodanobacter koreensis sp. nov., A bacterium isolated from tomato rhizosphere. Int J Syst Evol Microbiol 65:1180. https://doi.org/10.1099/ijs.0.000077

    Article  CAS  PubMed  Google Scholar 

  5. Gujarati S, Chaudhari D, Hagir A, Khairnar M, Shouche Y, Rahi P (2020) Klebsiella indica sp. nov., Isolated from the surface of a tomato. Int J Syst Evol Microbiol 70(5):3278–3286. https://doi.org/10.1099/ijsem.0.004168

    Article  CAS  PubMed  Google Scholar 

  6. Kim SJ, Cho H, Ahn JH, Weon HY, Joa JH, Hong SB, Seok SJ, Kim JS, Kwon SW (2017) Terrimonas terrae sp. nov., Isolated from the rhizosphere of a tomato plant. Int J Syst Evol Microbiol 67(8):3105–3110. https://doi.org/10.1099/ijsem.0.002104

    Article  CAS  PubMed  Google Scholar 

  7. de la Haba RR, Sánchez-Porro C, Marquez MC, Ventosa A (2011) Taxonomy of Halophiles. In: Horikoshi K (ed) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_13

    Chapter  Google Scholar 

  8. Patel S, Gupta RS (2020) A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. Nov. And Alkalihalobacillus gen. Nov. Int J Syst Evol Microbiol 70(1):406–438. https://doi.org/10.1099/ijsem.0.003775

    Article  CAS  PubMed  Google Scholar 

  9. Parte AC (2018) LPSN—list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68(6):1825–1829. https://doi.org/10.1099/ijsem.0.002786

    Article  PubMed  Google Scholar 

  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen JH, Tian XR, Ying R, Yang LL, Chen YG (2015) Bacillus crassostreae sp. nov., Isolated from an oyster in the South China sea. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijs.0.000139

    Article  PubMed  PubMed Central  Google Scholar 

  12. Parag B, Sasikala C, Ramana CV (2015) Bacillus endolithicus sp. nov., Isolated from pebbles. Int J Syst Evol Microbiol 65(12):4568. https://doi.org/10.1099/ijsem.0.000612

    Article  CAS  PubMed  Google Scholar 

  13. Leadbetter ER, Holt SC (1968) The fine structure of Bacillus fastidiosus. J Gen Microbiol 52(2):299–307. https://doi.org/10.1099/00221287-52-2-299

    Article  Google Scholar 

  14. Balcazar JL, Pintado J, Planas M (2010) Bacillus galliciensis sp. nov., Isolated from faeces of wild seahorses (Hippocampus guttulatus). Int J Syst Evol Microbiol 60:892–895. https://doi.org/10.1099/ijs.0.011817-0

    Article  CAS  PubMed  Google Scholar 

  15. Mehrshad M, Amoozegar MA, Didari M, Bagheri M, Fazeli SAS, Schumann P, Spröer C, Sánchez-Porro C, Ventosa A (2013) Bacillus halosaccharovorans sp. nov., A moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 63:2776

    Article  CAS  Google Scholar 

  16. Wieser M, Worliczek H, Kämpfer P, Busse H (2005) Bacillus herbersteinensis sp. Nov. Int J Syst Evol Microbiol 55(Pt 5):2119. https://doi.org/10.1099/ijs.0.63660-0

    Article  CAS  PubMed  Google Scholar 

  17. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703. https://doi.org/10.1128/JB.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang W, Sun Z (2008) Random local neighbor joining: a new method for reconstructing phylogenetic trees. Mol Phylogenet Evol 47(1):117–128. https://doi.org/10.1016/j.ympev.2008.01.019

    Article  CAS  PubMed  Google Scholar 

  19. Yoon S, Ha S, Lim J, Kwon S, Chun J, Hedlund BP, Sutcliffe IC, Trujillo ME (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110(10):1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  PubMed  Google Scholar 

  20. Kolaczkowski B, Thornton JW (2004) Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431(7011):980–984. https://doi.org/10.1038/nature02917

    Article  CAS  PubMed  Google Scholar 

  21. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bolger AM, Marc L, Bjoern U (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. https://doi.org/10.1093/bioinformatics/btu170

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. Plos Comput Biol 13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44(14):6614–6624. https://doi.org/10.1093/nar/gkw569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim D, Park S, Chun J (2021) Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 59(5):476–480. https://doi.org/10.1007/s12275-021-1154-0

    Article  CAS  PubMed  Google Scholar 

  29. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH (2019) GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz848

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thi HD, Olga C, Arndt VH, Quang MB, Sy VL (2017) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evolut. https://doi.org/10.1093/molbev/msx281

    Article  Google Scholar 

  31. Kalyaanamoorthy S, Minh BQ, Wong T, Haeseler AV, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. https://doi.org/10.1038/nmeth.4285

    Article  PubMed  PubMed Central  Google Scholar 

  32. Meier-Kolthoff JP, Gker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. https://doi.org/10.1038/s41467-019-10210-3

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vincent L, Richard D, Olivier G (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. https://doi.org/10.1093/molbev/msv150

    Article  Google Scholar 

  34. Contreras-Moreira B, Vinuesa P (2013) GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79(24):7696–7701. https://doi.org/10.1128/AEM.02411-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pablo V, Ochoa-Sánchez LE, Bruno CM (2018) GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring pan-genome phylogenies, used for a critical geno-taxonomic revision of the genus Stenotrophomonas. Front Microbiol 9:771. https://doi.org/10.3389/fmicb.2018.00771

    Article  Google Scholar 

  36. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics. https://doi.org/10.1093/bioinformatics/btu153

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13(9):2178–2189. https://doi.org/10.1101/gr.1224503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The rast server: rapid annotations using subsystems technology. BMC Genomics 9(1):75–75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kai B, Shaw S, Kloosterman AM, Charlop-Powers Z, Weber T (2021) Antismash 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab335

    Article  Google Scholar 

  40. Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8(9):634–644. https://doi.org/10.1038/nrmicro2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu D, Niu Y, Liu D, Wang G, Zheng S (2019) Sphingomonas gilva sp. nov., Isolated from mountain soil. Int J Syst Evol Microbiol 69(11):3472–3477. https://doi.org/10.1099/ijsem.0.003645

    Article  CAS  PubMed  Google Scholar 

  42. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. MIDI Inc, Newark

    Google Scholar 

  43. Collins MD (1985) 11 Analysis of Isoprenoid Quinones. In: Bergan T (ed) Methods in Microbiology. Academic Press, London, pp 329–366

    Google Scholar 

  44. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 2(5):233–241. https://doi.org/10.1016/0167-7012(84)90018-6

    Article  CAS  Google Scholar 

  45. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xu L, Sun C, Fang C, Oren A, Xu XW (2020) Genomic-based taxonomic classification of the family Erythrobacteraceae. Int J Syst Evol Microbiol 70(8):4470–4495. https://doi.org/10.1099/ijsem.0.004293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mao H, Wei Y, Gao Y, Pei J, Fang J (2020) Metabacillus sediminilitoris sp. nov., A marine bacterium isolated from a tidal sediment. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.004392

    Article  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Key Technologies Research and Development Program of China (CN) (2019YFD1002000), The Agricultural Science and Technology Innovation Program (ASTIP No. CAAS-ZDRW202201), and Beijing Innovation Consortium of Special Crops Research System.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. RM and SWH collected and analyzed samples. RM and XW drafted the manuscript. KKT and JGH edited the manuscript. XXZ designed experiment, edited, and approved the final manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Xiao-Xia Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The draft genome and 16S rRNA gene sequences of strain DBTR6T have been deposited at GenBank/EMBL/DDBJ under accession numbers JAIQUM000000000 and OK274256 respectively.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3187 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., He, SW., Wang, X. et al. Metabacillus rhizolycopersici sp. nov., Isolated from the Rhizosphere Soil of Tomato Plants. Curr Microbiol 79, 302 (2022). https://doi.org/10.1007/s00284-022-02995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02995-2

Navigation