Advertisement

Multiscale analysis of the coupled effects governing the movement of interstitial fluid in cortical bone

  • Thibault Lemaire
  • Salah NaïliEmail author
  • Agnès Rémond
Original paper

Abstract

A multiscale approach (periodic homogenization) is carried out to model osteon’s behaviour, and especially the coupled phenomena that govern its interstitial fluid movement. Actions of electro-osmotic and osmotic motions in addition to the classical Poiseuille flow are studied at the mesoscale of the canaliculus and within the micropores of the collagen-apatite matrix. Use of this fully coupled modelling leads to a comparison of these different effects. Limitation of a classical Darcian description of the fluid flow at the two scales is so studied. For each of these studies a special attention is given to the pore’s geometry influence and to their electrical and hydraulic properties

Keywords

Cortical Bone Upscaling Hydraulic Gradient Multiscale Analysis Streaming Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arramon Y, Nauman E (2001) The intrinsic permeability of cancellous bone. In: Cowin S (eds). Bone mechanics handbook, chap 5, 2nd edn. CRC, Boca Raton, FL, pp 1–17Google Scholar
  2. Auriault J-L (1991) Heterogeneous medium. Is an equivalent macroscopic description possible?. Int J Eng Sci 29:785–795CrossRefzbMATHGoogle Scholar
  3. Basset C, Becker R (1962) Generation of electrical potentials by bone in response to mechanical stress. Science 137:1063–1064PubMedCrossRefGoogle Scholar
  4. Berreta D, Pollack S (1986) Ion concentration effects on the zeta potential of bone. J orthop Res 4:337–341CrossRefPubMedGoogle Scholar
  5. Biot M (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164CrossRefGoogle Scholar
  6. Buckwalter J, Glimcher M, Cooper R, Recker R (1995) Bone biology. Part i: Structure, blood supply, cells, matrix, and mineralization. JBone Joint Surg Am 77:1256–1275Google Scholar
  7. Cowin S (2001) Bone poroelasticity. In: Cowin S (eds). Bone mechanics handbook, chap23, 2nd edn. CRC, Boca Raton, FL, pp 1–31Google Scholar
  8. Cowin S (2002) Mechanosensation and fluid transport in living bone. JMusculoskel Neuron Interaction 2(3):256–260Google Scholar
  9. Cowin S, Weinbaum S, Zeng Y (1995) A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech 28(11):1281–1297CrossRefPubMedGoogle Scholar
  10. Donnan F (1924) The theory of membrane equilibrium. Chem Rev 1:73–90CrossRefGoogle Scholar
  11. Dormieux L, Barboux P, Coussy O, Dangla P (1995) A macroscopic model of the swelling phenomenon of a saturated clay. Eur J Mech A/Solids 14(6):981–1004zbMATHGoogle Scholar
  12. Gu W, Lai W, Mow V (1998) A mixture theory for charged-hydrated soft tissues containing multi-electrolytes : passive transport and swelling behaviors. J Biomech Eng 120:169–180PubMedCrossRefGoogle Scholar
  13. Gururaja S, Kim H, Swan C, Brand R, Lakes R (2005) Modeling deformation-induced fluid flow in cortical bone’s canalicular-lacunar system. Ann Biomed Eng 33:7–25CrossRefPubMedGoogle Scholar
  14. Holmes J, Davies D, Meath W, Beebe RA (1953) Gas adsorption and surface structure of bone mineral. Biochemistry 3:2019–2024CrossRefGoogle Scholar
  15. Hornung U (1997) Homogenization and porous media. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  16. Hunter R (1981) Zeta potential in colloid science: principles and applications. Academic, New YorkGoogle Scholar
  17. Hunter R (2001) Foundations of colloid science. Oxford University Press, New YorkGoogle Scholar
  18. Israelachvili J (1991) Intermolecular and surface forces. Academic, New-YorkGoogle Scholar
  19. Kang Y, Yang C, Huang X (2002) Electroosmotic flow in a capillary annulus with high zeta potentials. J Colloid Interf Sci 253:285–294CrossRefGoogle Scholar
  20. Kim Y, Kim J, Kim Y, Rho J (2002) Effects of organic matrix proteins on the interfacial structure at the bone-biocompatible nacre interface in vitro. Biomaterials 23:2089–2096CrossRefPubMedGoogle Scholar
  21. Landau L, Lifshitz E (1960) Electrodynamics of continuous media. Pergamon Press, OxfordzbMATHGoogle Scholar
  22. Lemaire T (2004) Couplages Tlectro-chimio-hydro-mTcaniques dans les milieux argileux. PhD thesis, Institut National Polytechnique de Lorraine, NancyGoogle Scholar
  23. Lemaire T, Moyne C, Stemmelen D, Murad M (2002) Electro-chemo-mechanical couplings in swelling clays derived by homogenization : electroviscous effects and onsager’s relations. In: Auriault J, Geindreau C, Royer P, Bloch J-F, Boutin C, Lewandowska J (eds) Poromechanics II, proceedings of the second Biot conference on poromechanics, Grenoble, France. Balkema Publishers, Lisse, pp 489–500Google Scholar
  24. Lyklema J (1995) Foundamentals of interface and colloid science. Academic, LondonGoogle Scholar
  25. Mak A, Zhang J (2001) Numerical simulation of streaming potentials due to deformation-induced hierarchical flows in cortical bone. J Biomech Eng 123(1):66–70CrossRefPubMedGoogle Scholar
  26. Moyne C, Murad M (2002a) Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure. Int J Solids and Structures 39(25):6159–6190CrossRefzbMATHGoogle Scholar
  27. Moyne C, Murad M (2002b) Macroscopic behavior of swelling porous media derived from micromechanical analysis. Transport Porous Med 50:127–151CrossRefMathSciNetGoogle Scholar
  28. Philip J, Wooding R (1970) Solution of the poisson-boltzmann equation about a cylindrical particle. J Chem Phys 52:953–959CrossRefMathSciNetGoogle Scholar
  29. Piekarski K, Munro M (1977) Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269(5623):80–82CrossRefPubMedGoogle Scholar
  30. Pollack S (2001) Streaming potentials in bone. In: Cowin S (eds) Bone mechanics handbook, Chap 24, 2nd edition. CRC, Boca Raton, FL, pp 1–22Google Scholar
  31. Pollack S, Petrov N, Salzstein R, Brankov G, Blagoeva R (1984) An anatomical model for streaming potentials in osteons. J Biomech 17:627–636CrossRefPubMedGoogle Scholar
  32. RTmond A, Naili S (2004) Cyclic loading of a transverse isotropic poroelastic cylinder: a model for the osteon. C R Mec 332(9):759–766CrossRefGoogle Scholar
  33. Samson E, Marchand J, Robert J-L, Bournazel J-P (1999) Modelling ion diffusion mechanisms in porous media. Int J Numer Meth Eng 46:2043–2060CrossRefzbMATHMathSciNetGoogle Scholar
  34. Sanchez-Palencia E (1980) Non-homogenous media and vibration theory. In: Lectures notes in Physics, vol 127. Springer, Berlin Heidelberg New YorkGoogle Scholar
  35. Sasidhar V, Ruckenstein E (1981) Electrolyte osmosis through capillaries. J Colloid Interf Sci 8:439–457CrossRefGoogle Scholar
  36. Starkenbaum W, Pollack S, Korostoff E (1979) Microelectrode studies of stress generated potentials in four point bending of bone. J Biomed Mater Res 13:729–751CrossRefPubMedGoogle Scholar
  37. Tsay R, Weinbaum S (1991) Viscous flow in a channel with periodic cross-bridging fibers: exact solutions and brinkman approximation. J Fluid Mech 226:125–148zbMATHCrossRefGoogle Scholar
  38. Wang L, Fritton SP, Weinbaum S, Cowin S (2003) On bone adaptation due to venous stasis. J Biomech 36(10):1439–1451CrossRefPubMedGoogle Scholar
  39. Weinbaum S, Cowin S, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27(3):339–360CrossRefPubMedGoogle Scholar
  40. Yasuda I (1964) Piezoelectricity of living bone. J Kyoto Pref Med 53:2019–2024Google Scholar
  41. You L, Weinbaum S, Cowin S, Schaffler M (2004) Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec 278A(2):505–513CrossRefGoogle Scholar
  42. Zhang D, Weinbaum S, Cowin S (1998) On the calculation of bone pore water pressure due to mechanical loading. Int J Solids and Structures 35(34-35):4981–4997CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thibault Lemaire
    • 1
  • Salah Naïli
    • 1
    Email author
  • Agnès Rémond
    • 1
  1. 1.Laboratoire de Mécanique Physique, CNRS UMR 7052 B2OA Faculté des Sciences et TechnologieUniversité Paris XII-Val de MarneCréteil CédexFrance

Personalised recommendations