Skip to main content
Log in

Using scale and feather traits for module construction provides a functional approach to chicken epidermal development

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Gene co-expression network analysis has been a research method widely used in systematically exploring gene function and interaction. Using the Weighted Gene Co-expression Network Analysis (WGCNA) approach to construct a gene co-expression network using data from a customized 44K microarray transcriptome of chicken epidermal embryogenesis, we have identified two distinct modules that are highly correlated with scale or feather development traits. Signaling pathways related to feather development were enriched in the traditional KEGG pathway analysis and functional terms relating specifically to embryonic epidermal development were also enriched in the Gene Ontology analysis. Significant enrichment annotations were discovered from customized enrichment tools such as Modular Single-Set Enrichment Test (MSET) and Medical Subject Headings (MeSH). Hub genes in both trait-correlated modules showed strong specific functional enrichment toward epidermal development. Also, regulatory elements, such as transcription factors and miRNAs, were targeted in the significant enrichment result. This work highlights the advantage of this methodology for functional prediction of genes not previously associated with scale- and feather trait-related modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andl T, Reddy ST, Gaddapara T, Millar SE (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2:643–653

    Article  CAS  PubMed  Google Scholar 

  • Baden HP, Maderson PF (1970) Morphological and biophysical identification of fibrous proteins in the amniote epidermis. J Exp Zool A Ecol Genet Physiol 174:225–232

    CAS  Google Scholar 

  • Bao W, Greenwold MJ, Sawyer RH (2016) Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development. Gene 591:393–402

    Article  CAS  PubMed  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  CAS  PubMed  Google Scholar 

  • Bell E, Thathachari YT (1963) Development of feather keratin during embryogenesis of the chick. J Cell Biol 16:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Böhne A, Sengstag T, Salzburger W (2014) Comparative transcriptomics in East African cichlids reveals sex-and species-specific expression and new candidates for sex differentiation in fishes. Genome Biology and Evolution 6:2567–2585

    Article  PubMed  PubMed Central  Google Scholar 

  • Carey VJ, Gentry J, Whalen E, Gentleman R (2005) Network structures and algorithms in Bioconductor. Bioinformatics 21:135–136

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Jiang TX, Lin CM, Burrus LW, Chuong CM, Widelitz R (2004) Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers. Mech Dev 121:157–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang KW, Huang NA, Liu IH, Wang YH, Wu P, Tseng YT, Hughes MW, Jiang TX, Tsai MH, Chen CY, Oyang YJ (2015) Emergence of differentially regulated pathways associated with the development of regional specificity in chicken skin. BMC Genomics 16:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang CL, Jen CH, Chen CM, Shieh GS (2008) A pattern recognition approach to infer time-lagged genetic interactions. Bioinformatics 24:1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Chuong CM, Chen HM, Jiang TX, Chia J (1991) Adhesion molecules in skin development: morphogenesis of feather and hair. Ann N Y Acad Sci 642:263–280

    Article  CAS  PubMed  Google Scholar 

  • Eisinger BE, Saul MC, Driessen TM, Gammie SC (2013) Development of a versatile enrichment analysis tool reveals associations between the maternal brain and mental health disorders, including autism. BMC Neurosci 14:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Featherstone DE, Broadie K (2002) Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. BioEssays 24:267–274

    Article  CAS  PubMed  Google Scholar 

  • Fischer D, Tucker RP, Chiquet-Ehrismann R, Adams JC (1997) Cell-adhesive responses to tenascin-C splice variants involve formation of fascin microspikes. Mol Biol Cell 8:2055–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill FB (1995) Ornithology. Macmillan, London: W. H Freeman and Company New York. https://books.google.com/books?hl=en&lr=&id=jFfs1jsPfwgC&oi=fnd&pg=PR15&dq=Gill+FB+(1995)+Ornithology&ots=TaF-F3DS8N&sig=LLQo3GG3jXeLAchnRIyMr9V-y_U#v=onepage&q&f=false

  • Greenwold MJ, Bao W, Jarvis ED, Hu H, Li C, Gilbert MT, Zhang G, Sawyer RH (2014) Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evol Biol 14:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Haake AR, König G, Sawyer RH (1984) Avian feather development: relationships between morphogenesis and keratinization. Dev Biol 106:406–413

    Article  CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  • Harris MP, Fallon JF, Prum RO (2002) Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. J Exp Zool 294:160–176

    Article  CAS  PubMed  Google Scholar 

  • Hickner PV et al (2015) Whole transcriptome responses among females of the filariasis and arbovirus vector mosquito Culex pipiens implicate TGF-β signaling and chromatin modification as key drivers of diapause induction. Functional & Integrative Genomics 15:439–447

    Article  CAS  Google Scholar 

  • Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z, Lee Y (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci 103:17402–17407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 4:e1000117

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu ZL, Bao J, Reecy JM (2008) CateGOrizer: a web-based program to batch analyze Gene Ontology classification categories. Online Journal of Bioinformatics 9:108–112

    Google Scholar 

  • Hudson NJ, Reverter A, Wang Y, Greenwood PL, Dalrymple BP (2009) Inferring the transcriptional landscape of bovine skeletal muscle by integrating co-expression networks. PLoS One 4:e7249

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang TX et al (2004) Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models. The International Journal of Developmental Biology 48:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  • Langfelder P, Mischel PS, Horvath S (2013) When is hub gene selection better than standard meta-analysis? PLoS One 8:e61505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Chiang HI, Zhu J, Dowd SE, Zhou H (2008) Characterization of a newly developed chicken 44K Agilent microarray. BMC Genomics 9:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe CB, Clarke JA, Baker AJ, Haussler D, Edwards SV (2015) Feather development genes and associated regulatory innovation predate the origin of Dinosauria. Mol Biol Evol 32:23–28

    Article  CAS  PubMed  Google Scholar 

  • Maderson PF, Hillenius WJ, Hiller U, Dove CC (2009) Towards a comprehensive model of feather regeneration. J Morphol 270(10):1166–1208

    Article  PubMed  Google Scholar 

  • Maschietto M et al (2015) Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia. BMC Med Genet 8:23

    Google Scholar 

  • Miller JA et al (2014) Transcriptional landscape of the prenatal human brain. Nature 508:199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morota G, Beissinger TM, Peñagaricano F (2016) MeSH-informed enrichment analysis and MeSH-guided semantic similarity among functional terms and gene products in chicken. G3: Genes| Genomes| Genetics 6:2447–2453

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng CS, Wu P, Fan WL, Yan J, Chen CK, Lai YT, Wu SM, Mao CT, Chen JJ, Lu MY, Ho MR (2014) Genomic organization, transcriptomic analysis, and functional characterization of avian α-and β-keratins in diverse feather forms. Genome Biology and Evolution 6:2258–2273

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng CS, Chen CK, Fan WL, Wu P, Wu SM, Chen JJ, Lai YT, Mao CT, Lu MY, Chen DR, Lin ZS (2015) Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genomics 16:756

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers GE (1985) Genes for hair and avian keratins. Ann N Y Acad Sci 455:403–425

    Article  CAS  PubMed  Google Scholar 

  • Schäfer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21:754–764

    Article  PubMed  Google Scholar 

  • Shames RB, Bade BC, Sawyer RH (1994) Role of epidermal–dermal tissue interactions in regulating tenascin expression during development of the chick scutate scale. J Exp Zool A Ecol Genet Physiol 269:349–366

    CAS  Google Scholar 

  • Steffen M, Petti A, Aach J, D’haeseleer P, Church G (2002) Automated modelling of signal transduction networks. BMC Bioinformatics 3:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302:249–255

    Article  CAS  PubMed  Google Scholar 

  • Tammi R, Maibach H (1987) Skin organ culture: why? Int J Dermatol 26:150–160

    Article  CAS  PubMed  Google Scholar 

  • Thieffry D, Huerta AM, Pérez-Rueda E, Collado-Vides J (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20:433–440

    Article  CAS  PubMed  Google Scholar 

  • Tsuyuzaki K, Morota G, Ishii M, Nakazato T, Miyazaki S, Nikaido I, MeSH ORA framework (2015) R/Bioconductor packages to support MeSH over-representation analysis. BMC Bioinformatics 16:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker RP (1991) The sequential expression of tenascin mRNA in epithelium and mesenchyme during feather morphogenesis. Roux’s Archives of Developmental Biology 200:108–112

    Article  PubMed  Google Scholar 

  • Van Noort V, Snel B, Huynen MA (2003) Predicting gene function by conserved co- expression. Trends Genet 19:238–242

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2014) Metabolomic analysis of the salt-sensitive mutants reveals changes in amino acid and fatty acid composition important to long-term salt stress in Synechocystis sp. PCC 6803. Functional & Integrative Genomics 14:431–440

    Article  CAS  Google Scholar 

  • Widelitz RB, Jiang TX, Chen CW, Stott NS, Chuong CM (1999) Wnt-7a in feather morphogenesis: involvement of anterior-posterior asymmetry and proximal-distal elongation demonstrated with an in vitro reconstitution model. Development 126:2577–2587

    CAS  PubMed  Google Scholar 

  • Wong RY, Melissa SL, John G (2015) Characterizing the neurotranscriptomic states in alternative stress coping styles. BMC Genomics 16:425

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Z et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500:593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Wu P, Widelitz RB, Chuong CM (2002) The morphogenesis of feathers. Nature 420:308–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Yue Z, Wu P, Wu DY, Mayer JA, Medina M, Widelitz RB, Jiang TX, Chuong CM (2004) The developmental biology of feather follicles. The International Journal of Developmental Biology 48:181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:1128

    Article  Google Scholar 

  • Zhou X, Kao MC, Wong WH (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci 99:12783–12788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. Richard L. Goodwin (University of South Carolina, School of Medicine) for kindly providing chicken embryos and Dr. Diego Altomare for performing microarray experiments. The microarray work was supported by the National Institute of General Medical Sciences (grant number 8 P20 GM103499) and the National Center for Research Resources (grant number 5 P20 RR016461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weier Bao.

Electronic supplementary material

Supplemental Table 1

We apply a binary system (1 for positive and 0 for negative) to define and quantify the qualitative traits to measure the external trait based on the microarray expression profiles. This is the spreadsheet of this particular trait-defining strategy for 31 samples (XLSX 10 kb)

Supplemental Table 2

For the scale and feather traits, we list all modules having moderate Module-Trait correlations (r > 0.5, p < 0.01) individually, we also highlighted the modules also having moderate MM-GS correlations (r > 0.5, p < 0.01) (XLSX 10 kb)

Supplemental Table 3

Demonstrates all epidermal development-related genes (EDRGs) in brown and black modules. We also list the number of the edges (connectivity) for these genes. The rank of these EDRGs based on the connectivity number among all genes having gene symbol annotation and the top percentage were listed (XLSX 10 kb)

Supplemental Fig. 1

Illustrates the sample clustering based on individual sample expression profiles. Each array sample was named as the tissue type with the days of embryonic stages. The y-axis (height) is the distance metric calculated by average linkage hierarchical clustering method. There are no outliers and most of the samples with the same tissue type and embryonic stage cluster together (PNG 72 kb)

Supplemental Fig. 2

We performed the analysis of network topology to facilitate choosing soft threshold power β for constructing the WGCNA network. The left panel demonstrates the scale-free topology fit index (vertical axis) as the soft threshold power β (horizontal axis) varies. The right panel displays the mean connectivity (degree, vertical axis) as the soft threshold power β (horizontal axis) varies. The soft threshold power was selected based on the criterion of approximate scale-free topology which has high scale-free topology fit index (normally above 0.8) and the saturation of the mean connectivity was reached by the lowest power β (PNG 66 kb)

Supplemental File 1

To incorporate the external traits, gene significance (GS) of the genes having Entrez Gene ID annotations for Feather (“Feather trim” worksheet) and Scale (Scale trim worksheet) traits were sorted based on the absolute GS value. We also list the corresponding module color and the p value of GS (XLSX 4447 kb)

Supplemental File 2

We performed the KEGG pathway and Gene Ontology enrichment analysis individually for 11 modules having both correlated Module-Trait and MM-GS relationships (red color modules in Supplemental Table 2). The 2 worksheets listed all significantly enriched KEGG pathways and GO annotations with details based on the corrected p value (XLSX 10 kb) (XLSX 337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, W., Greenwold, M.J. & Sawyer, R.H. Using scale and feather traits for module construction provides a functional approach to chicken epidermal development. Funct Integr Genomics 17, 641–651 (2017). https://doi.org/10.1007/s10142-017-0561-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-017-0561-0

Keywords

Navigation