Skip to main content
Log in

Metabolomic analysis of the salt-sensitive mutants reveals changes in amino acid and fatty acid composition important to long-term salt stress in Synechocystis sp. PCC 6803

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Early studies in cyanobacteria have found that few genes induced by short-term salt shock (15–60 min) display a stable induction in the long-term (>1 day) salt-acclimated cells; meanwhile, most of the genes responsive to long-term salt stress were different from those by short-term salt shock, suggesting that different regulatory mechanisms may be involved for short-term and long-term salt stress responses. In our previous work using the model cyanobacterium Synechocystis sp. PCC 6803, sll1734 encoding CO2 uptake-related protein (CupA) and three genes encoding hypothetical proteins (i.e., ssr3402, slr1339, and ssr1853) were found induced significantly after a 3-day salt stress, and the corresponding gene knockout mutants were found salt sensitive. To further decipher the mechanisms that these genes may be involved, in this study, we performed a comparative metabolomic analysis of the wild-type Synechocystis and the four salt-sensitive mutants using a gas chromatography-mass spectrometry (GC-MS) approach. A metabolomic data set that consisted of 60 chemically classified metabolites was then subjected to a weighted correlation network analysis (WGCNA) to identify the metabolic modules and hub metabolites specifically related to each of the salt-stressed mutants. The results showed that two, one, zero, and two metabolic modules were identified specifically associated with the knockout events of sll1734, ssr3402, slr1339, and ssr1853, respectively. The mutant-associated modules included metabolites such as lysine and palmitic acid, suggesting that amino acid and fatty acid metabolisms are among the key protection mechanisms against long-term salt stresses in Synechocystis. The metabolomic results were further confirmed by quantitative reverse-transcription PCR analysis, which showed the upregulation of lysine and fatty acid synthesis-related genes. The study provided new insights on metabolic networks involved in long-term salt stress response in Synechocystis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Diez-Gonzalez F, Karaibrahimoglu Y (2004) Comparison of the glutamate-, arginine- and lysine-dependent acid resistance systems in Escherichia coli O157:H7. J Appl Microbiol 96:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA (2011) Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS One 6:e26683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fulda S, Huang F, Nilsson F, Hagemann M, Norling B (2000) Proteomics of Synechocystis sp strain PCC 6803 identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur J Biochem 267:5900–5907

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B, Hagemann M (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp strain PCC 6803. Proteomics 6:2733–2745

    Article  CAS  PubMed  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  CAS  PubMed  Google Scholar 

  • Han JDJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJM, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93

    Article  CAS  PubMed  Google Scholar 

  • Hasunuma T, Kikuyama F, Matsuda M, Aikawa S, Izumi Y, Kondo A (2013) Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. J Exp Bot 64:2943–2954

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi T, Tamaoka K, Furusawa C, Ono N, Suzuki S, Hirasawa T, Yomo T, Shimizu H (2010) Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress. BMC Genomics 11:579

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang F, Fulda S, Hagemann M, Norling B (2006) Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp strain PCC 6803. Proteomics 6:910–920

    Article  CAS  PubMed  Google Scholar 

  • Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser D, Selbig J, Willmitzer L (2010) Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 6:364

    Article  PubMed Central  PubMed  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp PCC 6803. Biochem Biophys Res Commun 290:339–348

    Article  CAS  PubMed  Google Scholar 

  • Khaware RK, Jethwaney D, Prasad R (1996) Role of PM-ATPase, amino acid transport and free amino acid pool in the salt stress of, Candida membranefaciens. Biochem Mol Biol Int 39:421–429

    CAS  PubMed  Google Scholar 

  • Kloft N, Rasch G, Forchhammer K (2005) Protein phosphatase PphA from Synechocystis sp. PCC 6803: the physiological framework of PII-P dephosphorylation. Microbiology 151:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Krall L, Huege J, Catchpole G, Steinhauser D, Willmitzer L (2009) Assessment of sampling strategies for gas chromatography-mass spectrometry (GC-MS) based metabolomics of cyanobacteria. J Chromatogr B 877:2952–2960

    Article  CAS  Google Scholar 

  • Laiakis EC, Morris GA, Fornace AJ, Howie SR (2010) Metabolomic analysis in severe childhood pneumonia in the Gambia, West Africa: findings from a pilot study. PLoS One 5:e12655

    Article  PubMed Central  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma 9:559

    Article  Google Scholar 

  • Liu J, Chen L, Wang J, Qiao J, Zhang W (2012) Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803. Biotechnol Biofuels 5:68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marin K, Kanesaki Y, Los DA, Murata N, Suzuki I, Hagemann M (2004) Gene expression profiling reflects physiological processes in salt acclimation of Synechocystis sp. strain PCC 6803. Plant Physiol 136:3290–3300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mejia R, Gomez-Eichelmann MC, Fernandez MS (1999) Fatty acid profile of Escherichia coli during the heat-shock response. Biochem Mol Biol Int 47:835–844

    CAS  PubMed  Google Scholar 

  • Nie L, Wu G, Culley DE, Scholten JC, Zhang W (2007) Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol 27:63–75

    Article  CAS  PubMed  Google Scholar 

  • Pandhal J, Wright PC, Biggs CA (2008) Proteomics with a pinch of salt: a cyanobacterial perspective. Saline Sys 4:1

    Article  Google Scholar 

  • Qiao J, Wang JX, Chen L, Tian X, Huang SQ, Ren XY, Zhang W (2012) Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803. J Proteome Res 11:5286–5300

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Huang S, Te R, Wang JX, Chen L, Zhang W (2013) Integrated proteomic and transcriptomic analysis reveals novel genes and regulatory mechanisms involved in salt stress responses in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 97:8253–8264

    Article  CAS  PubMed  Google Scholar 

  • Schwarz D, Orf I, Kopka J, Hagemann M (2013) Recent applications of metabolomics toward cyanobacteria. Metabolites 3:72–100

    Article  CAS  PubMed Central  Google Scholar 

  • Shoumskaya MA, Paithoonrangsarid K, Kanesaki Y, Los DA, Zinchenko VV, Tanticharoen M, Suzuki I, Murata N (2005) Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis. J Biol Chem 280:21531–21538

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S, Kaplan A, Ogawa T (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci U S A 98:11789–11794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh SC, Sinha RP, Hader DP (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308

    CAS  Google Scholar 

  • Ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500:169–171

    Article  PubMed  Google Scholar 

  • Thomas SP, Shanmugasundaram S (1991) Osmoregulatory role of alanine during salt stress in the nitrogen fixing cyanobacterium Anabaena sp. 287. Biochem Int 23:93–102

    Article  CAS  PubMed  Google Scholar 

  • Varela C, Agosin E, Baez M, Klapa M, Stephanopoulos G (2003) Metabolic flux redistribution in Corynebacterium glutamicum in response to osmotic stress. Appl Microbiol Biotechnol 60:547–555

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen L, Huang S, Liu J, Ren X, Tian X, Qiao J, Zhang W (2012) RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803. Biotechnol Biofuels 5:89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Wu G, Chen L, Zhang W (2013a) Cross-species transcriptional network analysis reveals conservation and variation in response to metal stress in cyanobacteria. BMC Genomics 14:112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Chen L, Tian X, Gao L, Niu X, Shi M, Zhang W (2013b) Global metabolomic and network analysis of Escherichia coli responses to biofuel stress. J Proteome Res 12:5302–5312

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa K, Hirasawa T, Ogawa K, Hidaka Y, Nakajima T, Furusawa C, Shimizu H (2013) Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnol J 8:571–580

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene coexpression network analysis. Stat Appl Genet Mol Biol 4:17

    Google Scholar 

Download references

Acknowledgments

This study was supported by funds from the National High-tech RD Program (National “863” program) (No. 2012AA02A707), the National Basic Research Program of China (National “973” program) (Nos. 2011CBA00803, 2012CB721101, and 2014CB745101), and the Tianjin Municipal Science and Technology Commission (No. 12HZGJHZ01000). The authors would also like to thank Tianjin University and the “985 Project” of the Ministry of Education for their financial support in establishing the research laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwen Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLSX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhang, X., Shi, M. et al. Metabolomic analysis of the salt-sensitive mutants reveals changes in amino acid and fatty acid composition important to long-term salt stress in Synechocystis sp. PCC 6803. Funct Integr Genomics 14, 431–440 (2014). https://doi.org/10.1007/s10142-014-0370-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0370-7

Keywords

Navigation