Skip to main content

Advertisement

Log in

Cnidarian Primary Cell Culture as a Tool to Investigate the Effect of Thermal Stress at Cellular Level

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

In the context of global change, symbiotic cnidarians are largely affected by seawater temperature elevation leading to symbiosis breakdown. This process, also called bleaching, is triggered by the dysfunction of the symbiont photosystems causing an oxidative stress and cell death to both symbiont and host cells. In our study, we wanted to elucidate the intrinsic capacity of isolated animal cells to deal with thermal stress in the absence of symbiont. In that aim, we have characterized an animal primary cell culture form regenerating tentacles of the temperate sea anemone Anemonia viridis. We first compared the potential of whole tissue tentacle or separated epidermal or gastrodermal monolayers as tissue sources to settle animal cell cultures. Interestingly, only isolated cells extracted from whole tentacles allowed establishing a viable and proliferative primary cell culture throughout 31 days. The analysis of the expression of tissue-specific and pluripotency markers defined cultivated cells as differentiated cells with gastrodermal origin. The characterization of the animal primary cell culture allowed us to submit the obtained gastrodermal cells to hyperthermal stress (+ 5 and + 8 °C) during 1 and 7 days. Though cell viability was not affected at both hyperthermal stress conditions, cell growth drastically decreased. In addition, only a + 8 °C hyperthermia induced a transient increase of antioxidant defences at 1 day but no ubiquitin or carbonylation protein damages. These results demonstrated an intrinsic resistance of cnidarian gastrodermal cells to hyperthermal stress and then confirmed the role of symbionts in the hyperthermia sensitivity leading to bleaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barnay-Verdier S, Dall’Osso D, Joli N, Olivré J, Priouzeau F, Zamoum T, Merle PL, Furla P (2013) Establishment of primary cell culture from the temperate symbiotic cnidarian, Anemonia viridis. Cytotechnology 65(5):697–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown BE, Downs CA, Dunne RP, Gibb SW (2002) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar Ecol Prog Ser 242:119–129

    Article  Google Scholar 

  • Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC (1997) Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med 23(3):361–366

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Zhang Y (2014) Marine invertebrate cell culture: a decade of development. J Oceanogr 70(5):405–414

    Article  Google Scholar 

  • Davy SK, Lucas IAN, Turner JR (1996) Carbon budgets in temperate anthozoan-dinoflagellate symbioses. Mar Biol 126(4):773–783

    Article  Google Scholar 

  • Domart-Coulon IJ, Elbert DC, Scully EP, Calimlim PS, Ostrander GK (2001) Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis. Proc Natl Acad Sci 98(21):11885–11890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domart-Coulon I, Tambutté S, Tambutté E, Allemand D (2004) Short term viability of soft tissue detached from the skeleton of reef-building corals. J Exp Mar Biol Ecol 309(2):199–217

    Article  Google Scholar 

  • Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33(4):533–543

    Article  CAS  PubMed  Google Scholar 

  • Downs CA, McDougall KE, Woodley CM, Fauth JE, Richmond RH, Kushmaro A, Gibb SW, Loya Y, Ostrander GK, Kramarsky-Winter E (2013) Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS One 8(12):e77173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn SR, Schnitzler CE, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc R Soc B Biol Sci 274(1629):3079–3085

    Article  Google Scholar 

  • Ferrier-Pages C, Tambutte E, Zamoum T, Segonds N, Merle PL, Bensoussan N, Allemand D, Garrabou J, Tambutte S (2009) Physiological response of the symbiotic gorgonian Eunicella singularis to a long-term temperature increase. J Exp Biol 212(18):3007–3015

    Article  PubMed  Google Scholar 

  • Frank U, Rabinowitz C, Rinkevich B (1994) In vitro establishment of continuous cell cultures and cell lines from ten colonial cnidarians. Mar Biol 120(3):491–499

    Article  Google Scholar 

  • Franklin DJ, Berges JA (2004) Mortality in cultures of the dinoflagellate Amphidinium Carterae during culture senescence and darkness. Proc Biol Sci 271(1553):2099–2107

    Article  PubMed  PubMed Central  Google Scholar 

  • Fransolet D, Roberty S, Plumier J-C (2014) Impairment of symbiont photosynthesis increases host cell proliferation in the epidermis of the sea anemone Aiptasia pallida. Mar Biol 161(8):1735–1743

    Article  CAS  Google Scholar 

  • Furla P, Allemand D, Orsenigo M-N (2000) Involvement of H+-ATPase and carbonic anhydrase in inorganic carbon uptake for endosymbiont photosynthesis. Am J Phys Regul Integr Comp Phys 278:R870–R881

    CAS  Google Scholar 

  • Ganot P, Moya A, Magnone V, Allemand D, Furla P, Sabourault C (2011) Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications. PLoS Genet 7(7):e1002187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helman Y, Natale F, Sherrell RM, LaVigne M, Starovoytov V, Gorbunov MY, Falkowski PG (2008) Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro. Proc Natl Acad Sci 105(1):54–58

    Article  CAS  PubMed  Google Scholar 

  • Higashikubo R, White RA, Roti Roti JL (1993) Flow cytometric BrdUrd-pulse-chase study of heat-induced cell-cycle progression delays. Cell Prolif 26(4):337–348

  • Hildebrandt B, Wust P, Ahlers O et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43(1):33–56

    Article  PubMed  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50(8):839

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Huete-Stauffer C, Valisano L, Gaino E, Vezzulli L, Cerrano C (2015) Development of long-term primary cell aggregates from Mediterranean octocorals. In Vitro Cell Dev Biol Anim 51(8):815–826

    Article  CAS  PubMed  Google Scholar 

  • Khalesi MK (2008) Cell cultures from the symbiotic soft coral Sinularia flexibilis. In Vitro Cell Dev Biol Anim 44(8-9):330–338

    Article  CAS  PubMed  Google Scholar 

  • Kopecky EJ, Ostrander GK (1999) Isolation and primary culture of viable multicellular endothelial isolates from hard corals. In Vitro Cell Dev Biol Anim 35(10):616–624

    Article  CAS  PubMed  Google Scholar 

  • Kühl NM, Rensing L (2000) Heat shock effects on cell cycle progression. Cell Mol Life Sci 57(3):450–463

    Article  PubMed  Google Scholar 

  • Leclère L, Jager M, Barreau C, Chang P, le Guyader H, Manuel M, Houliston E (2012) Maternally localized germ plasm mRNAs and germ cell/stem cell formation in the cnidarian Clytia. Dev Biol 364(2):236–248

    Article  PubMed  Google Scholar 

  • Lecointe A, Cohen S, Gèze M, Djediat C, Meibom A, Domart-Coulon I (2013) Scleractinian coral cell proliferation is reduced in primary culture of suspended multicellular aggregates compared to polyps. Cytotechnology 65(5):705–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16(3):187–192

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68(1):253–278

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Netherlands, Dordrecht, pp 405–419

    Chapter  Google Scholar 

  • Lesser MP, Stochaj WR, Tapley DW, Shick JM (1990) Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8(4):225–232

    Article  Google Scholar 

  • Mercurio S, Di Benedetto C, Sugni M, Candia Carnevali MD (2014) Primary cell cultures from sea urchin ovaries: a new experimental tool. In Vitro Cell Dev Biol Anim 50(2):139–145

    Article  CAS  PubMed  Google Scholar 

  • Morabito R, Marino A, Dossena S, La Spada G (2014) Nematocyst discharge in Pelagia noctiluca (Cnidaria, Scyphozoa) oral arms can be affected by lidocaine, ethanol, ammonia and acetic acid. Toxicon 83:52–58

    Article  CAS  PubMed  Google Scholar 

  • Moya A, Ganot P, Furla P, Sabourault C (2012) The transcriptomic response to thermal stress is immediate, transient and potentiated by ultraviolet radiation in the sea anemone Anemonia viridis. Mol Ecol 21(5):1158–1174

    Article  CAS  PubMed  Google Scholar 

  • Murate M, Kishimoto Y, Sugiyama T et al (1997) Hydra regeneration from recombined ectodermal and endodermal tissue. J Cell Sci 110:1919–1934

    CAS  PubMed  Google Scholar 

  • Naguib YMA (2000) A fluorometric method for measurement of oxygen radical-scavenging activity of water-soluble antioxidants. Anal Biochem 284(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Papenfuss EJ, Bokenham NAH (1939) The fate of the ectoderm and endoderm of hydra when cultured independently. Biol Bull 76(1):1–6

    Article  Google Scholar 

  • Passamaneck YJ, Martindale MQ (2012) Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis. BMC Dev Biol 12:1

    Article  Google Scholar 

  • Pey A, Zamoum T, Allemand D, Furla P, Merle PL (2011) Depth-dependant thermotolerance of the symbiotic Mediterranean gorgonian Eunicella singularis: evidence from cellular stress markers. J Exp Mar Biol Ecol 404(1-2):73–78

    Article  Google Scholar 

  • Pey A, Zamoum T, Christen R, Merle PL, Furla P (2017) Characterization of glutathione peroxidase diversity in the symbiotic sea anemone Anemonia viridis. Biochimie 132:94–101

    Article  CAS  PubMed  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317(5834):86–94

    Article  CAS  PubMed  Google Scholar 

  • Puverel S, Tambutté E, Zoccola D et al (2005) Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs 24(1):149–156

    Article  Google Scholar 

  • Rabinowitz C, Moiseeva E, Rinkevich B (2016) In vitro cultures of ectodermal monolayers from the model sea anemone Nematostella vectensis. Cell Tissue Res 366(3):693–705

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Bermudez A, Miller DJ (2009) In vitro culture of cells derived from larvae of the staghorn coral Acropora millepora. Coral Reefs 28(4):859–864

    Article  Google Scholar 

  • Richier S, Merle P-L, Furla P, Pigozzi D, Sola F, Allemand D (2003) Characterization of superoxide dismutases in anoxia- and hyperoxia-tolerant symbiotic cnidarians. Biochim Biophys Acta Gen Subj 1621(1):84–91

    Article  CAS  Google Scholar 

  • Richier S, Furla P, Plantivaux A et al (2005) Symbiosis-induced adaptation to oxidative stress. J Exp Biol 208(2):277–285

    Article  PubMed  Google Scholar 

  • Richier S, Sabourault C, Courtiade J, Zucchini N, Allemand D, Furla P (2006) Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis. FEBS J 273(18):4186–4198

    Article  CAS  PubMed  Google Scholar 

  • Richier S, Rodriguez-Lanetty M, Schnitzler CE, Weis VM (2008) Response of the symbiotic cnidarian Anthopleura elegantissima transcriptome to temperature and UV increase. Comp Biochem Physiol Part D Genomics Proteomics 3(4):283–289

  • Rinkevich B (1999) Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J Biotechnol 70(1-3):133–153

    Article  CAS  Google Scholar 

  • Sabourault C, Ganot P, Deleury E, Allemand D, Furla P (2009) Comprehensive EST analysis of the symbiotic sea anemone, Anemonia viridis. BMC Genomics 10(1):333

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmid V, Ono S, Reber-Müller S (1999) Cell-substrate interactions in Cnidaria. Microsc Res Tech 44(4):254–268

    Article  CAS  PubMed  Google Scholar 

  • Trench RK (1993) Microalgal-invertebrate symbioses-a review. Endocytobiosis Cell Res 9:135–175

    Google Scholar 

  • Vandepas LE, Warren KJ, Amemiya CT, Browne WE (2017) Establishing and maintaining primary cell cultures derived from the ctenophore Mnemiopsis leidyi. J Exp Biol. https://doi.org/10.1242/jeb.152371

  • Weis VM (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211(19):3059–3066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors greatly acknowledge Laura Hedon for her precious technical help and Thamilla Zamoum for RT-PCR technical advises. Authors also thank Maeva Gesson and Magali Mondin of the PRISM (Platform of Resources in Imaging and Scientific Microscopy, Institut de Biologie Valrose, Université Nice Sophia Antipolis), Matthieu Rouleau and Aldine Amiel for scientific discussions. Authors are also grateful to Brigitte Poderini, for sea anemone maintenance in aquaria. We thank the editor and the reviewers for their useful criticisms, which helped us improve the manuscript.

Funding

This work was supported by a doctoral fellowship from the French ministère de l’Enseignement supérieur et de la Recherche (513-EDSFA021-2013) to PV and by research funding program from Université Nice Sophia Antipolis and Provence Alpes Côte d’Azur Region (MIRACLE project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Barnay-Verdier.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

P. Furla and S. Barnay-Verdier share the seniorship position.

Electronic Supplementary Material

ESM 1

(DOCX 401 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, P., Toullec, G., Fricano, C. et al. Cnidarian Primary Cell Culture as a Tool to Investigate the Effect of Thermal Stress at Cellular Level. Mar Biotechnol 20, 144–154 (2018). https://doi.org/10.1007/s10126-017-9791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-017-9791-3

Keywords

Navigation