Skip to main content
Log in

Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant

  • Published:
Molecules and Cells

Abstract

We previously reported that one of the brassinosteroidinsensitive mutants, bri1-9, showed increased cold tolerance compared with both wild type and BRI1-overexpressing transgenic plants, despite its severe growth retardation. This increased tolerance in bri1-9 resulted from the constitutively high expression of stress-inducible genes under normal conditions. In this report, we focused on the genes encoding class III plant peroxidases (AtPrxs) because we found that, compared with wild type, bri1-9 plants contain higher levels of reactive oxygen species (ROS) that are not involved with the activation of NADPH oxidase and show an increased level of expression of a subset of genes encoding class III plant peroxidases. Treatment with a peroxidase inhibitor, salicylhydroxamic acid (SHAM), led to the reduction of cold resistance in bri1-9. Among 73 genes that encode AtPrxs in Arabidopsis, we selected four (AtPrx1, AtPrx22, AtPrx39, and AtPrx69) for further functional analyses in response to cold temperatures. T-DNA insertional knockout mutants showed increased sensitivity to cold stress as measured by leaf damage and ion leakage. In contrast, the overexpression of AtPrx22, AtPrx39, and AtPrx69 increased cold tolerance in the BRI1-GFP plants. Taken together, these results indicate that the appropriate expression of a particular subset of AtPrx genes and the resulting higher levels of ROS production are required for the cold tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, M., Hao, Y., Kapoor, A., Dong, C., Fujii, H., Zheng, X., and Zhu, J. (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem. 281, 37636–37645.

    Article  PubMed  CAS  Google Scholar 

  • Apel, K., and Hert, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399.

    Article  PubMed  CAS  Google Scholar 

  • Brouwer, K.S., van Valen, T., Day, D.A., and Lambers, H. (1986). Hydroxamate-stimulated O2 uptake in roots of Pisum sativum and Zea mays, mediated by a peroxidase. Plant Physiol. 82, 236–240.

    Article  PubMed  CAS  Google Scholar 

  • Burch, P.M., and Heintz, N.H. (2005). Redox-regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid. Redox Signal. 7, 741–751.

    Article  PubMed  CAS  Google Scholar 

  • Cao, S., Xu, Q., Cao, Y., Qian, K., An, K., Zhu, Y., Binzeng, H., Zhao, H., and Kua, B. (2005). Loss-of function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol. Plant 123, 57–66.

    Article  CAS  Google Scholar 

  • Chassot, S., Nawarth, C., and Metraux, J.P. (2007). Cuticular defects leads to full immunity to a major plant pathogen. Plant J. 49, 972–980.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B., Hong, X., Agarwal, M., and Zhu, J. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17, 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  • Cosio, C., and Dunand, C. (2009). Specific functions of individual classIII peroxidases genes. J. Exp. Bot. 62, 391–408.

    Article  Google Scholar 

  • Dhaubhadel, S., Browning, K.S., Gallie, D.R., and Krishna, P. (2002). Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 29, 681–691.

    Article  PubMed  CAS  Google Scholar 

  • Edward, S.L., Raag, R., Wariishi, H., Gold, M.H., and Poulos, T.L. (1993). Crystal structure of lignin peroxidase. Proc. Natl. Acad. Sci. USA 90, 750–754.

    Article  Google Scholar 

  • Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124, 1854–1865.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, J.P., Bennett, M.J., Bowen, H.C., Broadly, M.R., Eastwood, D.C., May, S.T., Rahn, C., Swarup, R., Woolaway, K.E., and Whote, P.J. (2003). Changes in gene expression in Arabidopsis shoot during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132, 578–596.

    Article  PubMed  CAS  Google Scholar 

  • He, R.Y., Wang, G.Y., and Wang, S.X. (1991). Effect of brassinolide on growth and chilling resistance of maize seedlings. In Brassinosteroids: Chemistry, Bioactivity and Applications, H.G. Cutler, T. Yokoda, and G. Adam, eds. (American Chemical Society, Washington DC), pp. 220–230.

    Chapter  Google Scholar 

  • Irshad, M., Canut, H., Borderies, G., Pont-Lezica, R., and Jamet, E. (2008). A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. BMC Plant Biol. 8, 94.

    Article  PubMed  Google Scholar 

  • Kang, J.G., Pyo, Y.J., Cho, J.W., and Cho, M.H. (2004). Comparative proteome analysis of differentially expressed proteins induced by K+ deficiency in Arabidopsis thaliana. Proteomics 4, 3549–3559.

    Article  PubMed  CAS  Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.Y., Kim, B.H., Lim, C.J., Lim, C.O., and Nam, K.H. (2010). Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiol. Plant. 138, 191–204.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.H., Kim, M.D., Choi, Y.I., Park, S.C., Yun, D.J., Noh, E.W., Lee, H.S., and Kwak, S.S. (2011). Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotech. J. 9, 334–347.

    Article  CAS  Google Scholar 

  • Kinoshita, T., Caño-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., and Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Kolk, E.J., Wilson, I.W., Wilson, D., Champman, S.C., Ewing, R.M., Somerville, S.C., Peacock, W.J., Dolferus, R., and Dennis, E.S. (2002). Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14, 2481–2494.

    Article  Google Scholar 

  • Kumari, M., Tayor, G.J., and Deyholos, M.K. (2008). Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol. Genet. Genomics 279, 339–357.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., and Chory, J. (1997). A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90, 929–938.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., van Staden, J., and Jäger, A.K. (1998). Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul. 25, 81–87.

    Article  CAS  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391–1406.

    PubMed  CAS  Google Scholar 

  • Llorente, F., Lópes-Cobollo, R.M., Catalá, R., Martínes-Zapater, J., and Salinas, J. (2002). A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J. 32, 13–24.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., and Breusengem, F.V. (2004). Reactive oxygen species gene network of plants. Trends Plant Sci. 9, 490–498.

    Article  PubMed  CAS  Google Scholar 

  • Mohr, P.G., and Cahill, D.M. (2007). Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct. Integr. Genomics 7, 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Møller, I.M., and Sweetlove, L.J. (2010). ROS signaling-specificity is required. Trends Plant Sci. 15, 370–374.

    Article  PubMed  Google Scholar 

  • Møler, I.M., Jensen, P.E., and Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58. 459–481.

    Article  Google Scholar 

  • Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D.T., Lee, O., Kwak, S.S., Kim, D.H., Nam, J., Bahk, J., et al. (2003). NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA 100, 358–363.

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova, V., Freitag, J., Kempa, S., Adamik, M., Hesse, H., and Hoefgan, R. (2003). Transcriptome analysis of sulfur depletion on Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J. 33, 633–650.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Tuan, H., Feldmann, K.A., and Tax, F.E. (1999). Brassinostroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 121, 743–752.

    Article  PubMed  CAS  Google Scholar 

  • Novillo, F., Alonso, J.M., Ecker, J.R., and Salinas, J. (2004). CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 3985–3990.

    Article  PubMed  CAS  Google Scholar 

  • Özdemir, F., Bor, M., Demiral, T., and Türkan, I. (2004). Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul. 42, 203–211.

    Article  Google Scholar 

  • Potikha, T.S., Collins, C.C., Johnson, D.I., Delmer, D.P., and Levine, A. (1999). The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 119, 849–858.

    Article  PubMed  CAS  Google Scholar 

  • Reichheld, J.P., Vernoux, T., Lardon, F., Montagu, M.V., and Inze, D. (1999). Specific checkpoints regulate plant cell cycle progresssion in response to oxidative stress. Plant J. 17, 647–656.

    Article  CAS  Google Scholar 

  • Rentel, M.C., Lecourieux, D., Ouaked, F., Usher, S.L., Petersen, L., Okamoto, H., Knight, H., Peck, S.C., Grierson, C.S., Hirt, H., et al. (2004). OXI1 kinase is necessary for oxidative burst-mediated signaling in Arabidopsis. Nature 427, 858–861.

    Article  PubMed  CAS  Google Scholar 

  • Schopfer, P., Liszkay, A., Bechtold, M., Frahry, G., and Wagner, A. (2002). Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214, 821–828.

    Article  PubMed  CAS  Google Scholar 

  • Smulevich, G., Jakopitsch, C., Droghetti, E., and Obinger, C. (2006). Probing the structure and bifunctionality of catalase-peroxidase (KatG). J. Inorg, Biochem. 100, 568–585.

    Article  CAS  Google Scholar 

  • Swanson, S., and Gilroy, S. (2010). ROS in plant development. Physiol. Plant 138, 384–392.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, R., Clark, T., and Preuss, D. (2005). Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes. Sex. Plant Reprod. 18, 173–171.

    Article  Google Scholar 

  • Teige, M., Scheikl, E., Eulgem, T., Do’czi, R., Ichimura, K., Shinozaki, K., Dangl, J.L., and Hirt, H. (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell 15, 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Tognolli, M., Penel, C., Greppin, H., and Simon, P. (2002). Analysis and expression of the class III peroxidases large gene family in Arabidopsis thaliana. Gene 288, 129–138.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M.A., Dnagl, J.L., and Jones, J.D.G. (2002). Arabidposis gp91phox homologs AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99, 517–522.

    Article  PubMed  CAS  Google Scholar 

  • Tsukagoshi, H., Busch, W., and Benfey, P.N. (2010). Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143, 606–616.

    Article  PubMed  CAS  Google Scholar 

  • Valério, L., Meyer, M.D., Penel, C., and Dunand, C. (2004). Expression analysis of the Arabidopsis peroxidase multigene family. Phytochemistry 65, 1331–1342.

    Article  PubMed  Google Scholar 

  • Vardhini, B.V., and Rao, S.S.R. (2003). Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul. 41, 25–31.

    Article  CAS  Google Scholar 

  • Vert, G., Nemhauser, J.L., Geldner, N., Hong, F., and Chory, J. (2005). Molecular mechanisms of steroid hormone signaling in plants. Annu. Rev. Cell Dev. Biol. 21, 177–201.

    Article  PubMed  CAS  Google Scholar 

  • Xia, X.J., Wang, Y.J., Zhou, Y.H., Tao, Y., Mao, W.H., Shi, K., Asami, T., Chen, Z., and Yu, J.Q. (2009). Reactive oxygen species are involved in brassinosteroid-Induced stress tolerance in cucumber. Plant Physiol. 150, 801–814.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Z., and Browse, J. (1998). Eskimo1 mutants of Arabidopsis are constitutively freezing tolerant. Proc. Natl. Acad. Sci. USA 95, 7799–7804.

    Article  PubMed  CAS  Google Scholar 

  • Xing, Y., Xing, Y., Jia, W., and Zhang, J. (2008). AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J. 54, 440–521.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J.Q., Zhou, Y.H., Ye, S.F., and Huang, L.F. (2002). 24-Epibrassinolide and abscisic acid protect cucumber seedlings from chilling injury. J. Hortic. Sci. Biotechnol. 77, 470–473.

    CAS  Google Scholar 

  • Yuasa, T., Ichimura, K., Mizoguchi, T., and Shinozaki, K. (2001). Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol. 42, 1012–1016.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Hee Nam.

About this article

Cite this article

Kim, B.H., Kim, S.Y. & Nam, K.H. Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol Cells 34, 539–548 (2012). https://doi.org/10.1007/s10059-012-0230-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0230-z

Keywords

Navigation