Skip to main content
Log in

Ectopic expression of Arabidopsis RCI2A gene contributes to cold tolerance in tomato

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Cold is a major stress that limits the quality and productivity of economically important crops such as tomato (Solanum lycopersicum L.). Generating a cold-stress–tolerant tomato by expressing cold-inducible genes would increase agricultural strategies. Rare cold-inducible 2a (RCI2A) is expressed in Arabidopsis, but its molecular function during cold stress is not fully understood. Here we ectopically expressed Arabidopsis RCI2A in transgenic tomato to evaluate tolerance to cold stress without altering agronomic traits. Biochemical and physiological study demonstrated that expression of RCI2A in transgenic tomato enhanced the activity of peroxidase and ascorbate peroxidase (APX) and reduced the accumulation of H2O2, alleviated lipid peroxidation, increased the accumulation of chlorophyll, reduced chilling-induced membrane damage, retained relative water content and enhanced cold tolerance. A motif search revealed that the motifs of photosystem II (PSII) phosphoproteins PsbJ and PsbH and reaction-center proteins PsbL and PsbK were common to cold-inducible RCI2A and peroxidase proteins RCI3A, tomato peroxidase (TPX1), TPX2, tomato ascorbate peroxidase (APX1), and horseradish peroxidase (HRP-c). In addition to membrane protection, RCI2A may cross talk with PSII-associated proteins or peroxidase family enzymes in response to cold stress. Our findings may strengthen the understanding of the molecular function of RCI2A in cold-stress tolerance. RCI2A could be used to improve abiotic stress tolerance in agronomic crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

CaMV:

Cauliflower mosaic virus

NADPH:

Nicotinamide adenine dinucleotide phosphate (reduced)

References

  • Ali G, Srivastava PS, Iqbal M (1999) Proline accumulation, protein pattern and photosynthesis in Bacopa Monniera regenerants grown under NaCl stress. Biol Plant 42:89–95

    Article  CAS  Google Scholar 

  • Anderson JV, Li QB, Haskell DW, Guy CL (1994) Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol 104:1359–1370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants. Physiol Plantarum 85:235–241

    Article  CAS  Google Scholar 

  • Bakalova S, Nedeva D, Mckee J (2008) Protein profiles in wheat seedlings subjected to dehydration stress. Appl Eco Environ Res 6:37–48

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bergantino E, Brunetta A, Touloupakis E, Segalla A, Szabo I, Giacometti GM (2003) Role of the PSII-H subunit in photoprotection: novel aspects of D1 turnover in synechocystis 6803. J Biol Chem 278:41820–41829

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brüggemann W, Kooij TW, Hasselt P (1992) Long-term chilling of young tomato plants under low light and subsequent recovery. Planta 186:179–187

    Article  PubMed  Google Scholar 

  • Byrd GT, Ort DR, Ogren WL (1995) The effects of chilling in the light on Ribulose-1,5-bisphosphate carboxylase/oxygenasea activation in tomato (Lycopersicon esculentum Mill.). Plant Physiol 107:585–591

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campos PS, Quartin V, Ramalho JC, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283–292

    Article  CAS  PubMed  Google Scholar 

  • Capel J, Jarillo JA, Salinas J, Martinez-Zapater JM (1997) Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins. Plant Physiol 115:569–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen P-Y, Wang C-K, Soong S-C, To K-Y (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breeding 11:287–293

    Article  CAS  Google Scholar 

  • de Azevedo Neto AD, Prisco JT, Enéas-Filho J, Abreu CEBD, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic atresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde Dehydrogenase. PLoS ONE 7:e37344–e37357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feierabend J, Schaan C, Hertwig B (1992) Photoinactivation of catalase occurs under both high- and low-temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiol 100:1554–1561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foyer C, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa S, Takabe K (1996) Formation of multiplex lamellae by equilibrium slow freezing of cortical parenchyma cells of mulberry and its possible relationship to freezing tolerance. Protoplasma 190:189–203

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gould J, Devey M, Hasegawa O, Ulian EC, Peterson G, Smith RH (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 95:426–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graham D, Patterson BD (1982) Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Ann Rev Plant Physiol 33:347–372

    Article  CAS  Google Scholar 

  • Gusta LV, Weiser CJ (1972) Nucleic acid and protein changes in relation to cold acclimation and freezing injury of korean boxwood leaves. Plant Physiol 49:91–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47:291–305

    Article  CAS  Google Scholar 

  • Kacperska-Palacz A (1978) Mechanism of cold acclimation in herbaceous plants. In: Li P, Sakai A (eds) Plant cold hardiness and freezing stress. Academic Press, New York, pp 139–152

    Chapter  Google Scholar 

  • Kato M, Shimizu S (1987) Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Can J Bot 65:729–735

    Article  CAS  Google Scholar 

  • Kaur P, Bansal KC (2010) Efficient production of transgenic tomatoes via Agrobacterium-mediated transformation. Biol Plant 54:344–348

    Article  CAS  Google Scholar 

  • Khare N, Goyary D, Singh N, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tiss Org Cult 103:267–277

    Article  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2001) Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiol Plant 113:323–331

    Article  CAS  PubMed  Google Scholar 

  • Kubo A, Aono M, Nakajima N, Saji H, Tanaka K, Kondo N (1999) Differential responses in activity of antioxidant enzymes to different environmental stresses in Arabidopsis thaliana. J Plant Res 112:279–290

    Article  CAS  Google Scholar 

  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158:737–745

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stress. Chilling, freezing, and high temperature stresses. Academic Press, New York

    Google Scholar 

  • Llorente F, Lopez-Cobollo RM, Catala R, Martinez-Zapater JM, Salinas J (2002) A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J 32:13–24

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Ann Rev Plant Physiol 24:445–466

    Article  CAS  Google Scholar 

  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31:699–712

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Medina J, Catalá R, Salinas J (2001) Developmental and stress regulation of RCI2A and RCI2B, two cold-inducible genes of Arabidopsis encoding highly conserved hydrophobic proteins. Plant Physiol 125:1655–1666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Medina J, Rodriguez-Franco M, Penalosa A, Carrascosa MJ, Neuhaus G, Salinas J (2005) Arabidopsis mutants deregulated in RCl2A expression reveal new signaling pathways in abiotic stress responses. Plant J 42:586–597

    Article  CAS  PubMed  Google Scholar 

  • Medina J, Ballesteros ML, Salinas J (2007) Phylogenetic and functional analysis of Arabidopsis RCI2 genes. J Exp Bot 58:4333–4346

    Article  CAS  PubMed  Google Scholar 

  • Melcarek PK, Brown GN (1977) Effects of chill stress on prompt and delayed chlorophyll fluorescence from leaves. Plant Physiol 60:822–825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitsuya S, Taniguchi M, Miyake H, Takabe T (2006) Overexpression of RCI2A decreases Na+ uptake and mitigates salinity-induced damages in Arabidopsis thaliana plants. Physiol Plant 128:95–102

    Article  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33:541–553

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Nylander M, Heino P, Helenius E, Palva ET, Ronne H, Welin BV (2001) The low-temperature- and salt-induced RCI2A gene of Arabidopsis complements the sodium sensitivity caused by a deletion of the homologous yeast gene SNA1. Plant Mol Biol 45:341–352

    Article  CAS  PubMed  Google Scholar 

  • Palva ET (1994) Gene expression under low temperature stress. In: Basra A (ed) Stress induced gene expression in plants. Switzerland, Harwood Academic Publishers, pp 103–113

    Google Scholar 

  • Parida AK, Das AB, Mittra B, Mohanty P (2004) Salt-stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Z Naturforsch C 59:408–414

    Article  CAS  PubMed  Google Scholar 

  • Patade VY, Khatri D, Kumari M, Grover A, Gupta SM, Ahmed Z (2013) Cold tolerance in Osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes. SpringerPlus 2:117–123

    Article  PubMed Central  PubMed  Google Scholar 

  • Patterson B, Murata T, Graham D (1976) Electrolyte leakage induced by chilling in Passiflora species tolerant to different climates. Funct Plant Biol 3:435–442

    Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajashekar CB, Lafta A (1996) Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. Plant Physiol 111:605–612

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roy R, Purty R, Agrawal V, Gupta S (2006) Transformation of tomato cultivar ‘Pusa Ruby’ with bspA gene from Populus tremula for drought tolerance. Plant Cell Tiss Org Cult 84:56–68

    Article  Google Scholar 

  • Saltveit MEJ, Morris LL (1990) Overview on chilling injury of horticultural crops. In: Wang CY (ed) chilling injury of horticultural crops. CRC Press, Boca Raton, FL, pp 3–15

    Google Scholar 

  • Sangam S, Jayasree D, Reddy KJ, Chari PVB, Sreenivasulu N, Kavi Kishor PB (2005) Salt tolerance in plants-transgenic approaches. J Plant Biotech 7:1–15

    Google Scholar 

  • Seong ES, Cho HS, Choi D, Joung YH, Lim CK, Hur JH, Wang MH (2007) Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. Biochem Bioph Res Co 363:983–988

    Article  CAS  Google Scholar 

  • Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt rend Acad bulg Sci 51:121–124

    Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Sosinska A, Maleszewski S (1978) Alanine metabolism in leaves of rape plants treated with low temperature. Zeitschrift für Pflanzenphysiologie 88:55–59

    Article  CAS  Google Scholar 

  • Starck Z, Niemyska B, Bogdan J, Akour Tawalbeh RN (2000) Response of tomato plants to chilling stress in association with nutrient or phosphorus starvation. Plant Soil 226:99–106

    Article  CAS  Google Scholar 

  • Subramanyam K, Arun M, Mariashibu TS, Theboral J, Rajesh M, Singh NK, Manickavasagam M, Ganapathi A (2012) Overexpression of tobacco osmotin (Tbosm) in soybean conferred resistance to salinity stress and fungal infections. Planta 236:1909–1925

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto I, Takahashi Y (2003) Evidence that the PsbK polypeptide is associated with the photosystem II core antenna complex CP43. J Biol Chem 278:45004–45010

    Article  CAS  PubMed  Google Scholar 

  • Sui N, Li M, Zhao SJ, Li F, Liang H, Meng QW (2007) Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta 226:1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Suorsa M, Regel RE, Paakkarinen V, Battchikova N, Herrmann RG, Aro EM (2004) Protein assembly of photosystem II and accumulation of subcomplexes in the absence of low molecular mass subunits PsbL and PsbJ. E J Biochem 271:96–107

    Article  CAS  Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian Y, Zhang H, Pan X, Chen X, Zhang Z, Lu X, Huang R (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20:857–866

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang Y, Qiu L, Dai C, Wang J, Luo J, Zhang F, Ma J (2008) Expression of insect (Microdera puntipennis dzungarica) antifreeze protein MpAFP149 confers the cold tolerance to transgenic tobacco. Plant Cell Rep 27:1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Weatherley PE (1950) Studies in the water relations of the cotton plant. I. The field of measurement of water deficit in leaves. New Phytol 49:81–97

    Article  Google Scholar 

  • Xu P, Rogers SJ, Roossinck MJ (2004) Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress. P Natl Acad Sci USA 101:15805–15810

    Article  CAS  Google Scholar 

  • Yancey P, Clark M, Hand S, Bowlus R, Somero G (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by grants from the Defence Institute of High Altitude Research (DIHAR)-Defence Research and Development Organization (DRDO), Leh, Ladakh, India [No.:118/BU/FRL dt. 20.10.2006]; and Junior Research Fellow award to Velu Sivankalyani (09/472(0163)/2012-EMR-I dt. 05/09/2012) by the Council of Scientific and Industrial Research (CSIR), India. We are grateful to Prof. A. Ganapathi (Department of Biotechnology, Bharathidasan University, Trichy, Tamil Nadu, India) for providing Southern hybridization facilities. The clone was authorised to import and the present research work was permitted (No. BT/BS/17/220/2006-PID dt. 07.01.2010) by a review committee on genetic manipulation (RCGM), Department of Biotechnology, Ministry of Science and Technology, Government of India.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmugam Girija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivankalyani, V., Geetha, M., Subramanyam, K. et al. Ectopic expression of Arabidopsis RCI2A gene contributes to cold tolerance in tomato. Transgenic Res 24, 237–251 (2015). https://doi.org/10.1007/s11248-014-9840-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9840-x

Keywords

Navigation