Skip to main content

Advertisement

Log in

Role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium deposits: insights from reactive-flow modeling

Rôle des facteurs hydrodynamiques dans le contrôle de la formation et de l’emplacement des dépôts d’uranium associés à des discordances: aperçus issus de la modélisation de transport réactif

El rol de los factores hidrodinámicos en el control de la formación y localización de depósitos de uranio relacionados con discordancias: conocimientos a partir del modelado de un flujo reactivo

O papel de fatores hidrodinâmicos no controle da formação e locação de depósitos de urânio relacionados a discordâncias: conhecimento a partir de modelagem reativa de fluxo

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium (URU) deposits in sedimentary basins during tectonically quiet periods is investigated. A number of reactive-flow modeling experiments at the deposit scale were carried out by assigning different dip angles and directions to a fault and various permeabilities to hydrostratigraphic units). The results show that the fault dip angle and direction, and permeability of the hydrostratigraphic units govern the convection pattern, temperature distribution, and uranium mineralization. A vertical fault results in uranium mineralization at the bottom of the fault within the basement, while a dipping fault leads to precipitation of uraninite below the unconformity either away from or along the plane of the fault, depending on the fault permeability. A more permeable fault causes uraninite precipitates along the fault plane, whereas a less permeable one gives rise to the precipitation of uraninite away from it. No economic ore mineralization can form when either very low or very high permeabilities are assigned to the sandstone or basement suggesting that these units seem to have an optimal window of permeability for the formation of uranium deposits. Physicochemical parameters also exert an additional control in both the location and grade of URU deposits. These results indicate that the difference in size and grade of different URU deposits may result from variation in fluid flow pattern and physicochemical conditions, caused by the change in structural features and hydraulic properties of the stratigraphic units involved.

Résumé

Le rôle des facteurs hydrodynamiques dans le contrôle de la formation et de l’emplacement des dépôts d’uranium associés à des discontinuités (URU) dans des bassins sédimentaires au cours des périodes de calme tectonique est étudié. Un certain nombre d’expériences de modélisation de transport réactif à l’échelle du dépôt a été effectué en attribuant différents angles de pendange et directions à une faille et différentes perméabilités à des unités hydrostratigraphiques (exemple des bassins au Canada). Les résultats montrent que l’angle de pendage de la faille et la direction, et la perméabilité des unités hydrostratigraphiques régissent le mode de convection, la distribution de la température et la minéralisation de l’uranium. Une faille verticale donne lieu à une minéralisation d’uranium à la base de la faille dans socle, tandis qu’une faille avec pendage conduit à la précipitation d’uraninite en dessous de la discontinuité, soit loin de ou le long du plan de faille, en fonction de la perméabilité de la faille. Une faille plus perméable cause des précipités d’uraninite le long du plan de faille, alors qu’une faille moins perméable donne lieu à la précipitation d’uraninite loin d’elle. Aucune minéralisation de minerai économique peut se former lorsque des perméabilités soit très faibles soit très élevées sont attribuées au grès ou au sous-sol suggérant que ces unités semblent avoir une fenêtre optimale de perméabilité pour la formation de dépôts d’uranium. Les paramètres physicochimiques exercent également un contrôle supplémentaire à la fois dans l’emplacement et la qualité des dépôts URU. Ces résultats indiquent que la différence en taille et qualité des différents dépôts URU peut résulter d’une variation dans le mode d’écoulement du fluide et des conditions physicochimiques, provoquée par un changement des caractéristiques structurelles et des propriétés hydrauliques des unités stratigraphiques concernées.

Resumen

Se investiga el rol de los factores hidrodinámicos en el control de la formación y la localización de los depósitos de uranio relacionados con discordancias (URU) en cuencas sedimentarias durante períodos tectónicamente calmos. Se llevaron a cabo una serie de experimentos con modelos de flujo reactivo a escala del depósito asignando diferentes ángulos y direcciones de inclinación a una falla y varias permeabilidades a las unidades hidroestratigráficas (ejemplos de cuencas en Canadá). Los resultados muestran que el ángulo de inclinación y la dirección de las fallas y la permeabilidad de las unidades hidroestratigráfica gobiernan el esquema de convección, la distribución de la temperatura, y la mineralización de uranio. Una falla vertical da como resultado en la mineralización de uranio en la parte inferior de la falla dentro del basamento, mientras que una falla en inclinación conduce a una precipitación de uraninita por debajo de la discordancia tanto fuera como a lo largo del plano de la falla, dependiendo de la permeabilidad de la falla. Una falla más permeable produce precipitados de uraninita a lo largo del plano de la falla, mientras que una menos permeable da origen a una precipitación de uraninita alejada de ella. No se puede formar ninguna mineralización económica tanto cuando se asignan muy bajas o muy altas permeabilidades a areniscas o al basamento lo que sugiere que estas unidades parecen tener una ventana óptima de permeabilidad para la formación de depósitos de uranio. Los parámetros fisicoquímicos también ejercen un control adicional tanto en la localización y como en el grado de los depósitos URU. Estos resultados indican que la diferencia en el tamaño y el grado de los diferentes depósitos URU puede ser el resultado de las variaciones del esquema de flujo y en las condiciones fisicoquímicas de los fluidos, causadas por el cambio en las características estructurales y las propiedades hidráulicas de las unidades estratigráficas involucrados.

Resumo

O papel de fatores hidrodinâmicos no controle da formação e locação de depósitos de urânio relacionados a discordâncias (URD) em bacias sedimentares durante períodos tectônicos calmos foi investigado. Vários experimentos de modelagem de fluxo reativo em escala de depósito foram conduzidos pela atribuição de ângulos de mergulho e direções de falhas e várias permeabilidades a unidades hidroestratigráficas (exemplos de bacias no Canadá). Os resultados mostraram que o ângulo de mergulho das falhas e direção, e a permeabilidade da unidade hidroestratigráfica governam o padrão de convecção, distribuição e temperatura, e mineralização do urânio. Uma falha vertical resulta na mineralização do urânio no fundo da falha dentro do embasamento, enquanto uma falha inclinada leva à precipitação de uraninita abaixo da discordância, quer seja para longe ou ao longo do plano da falha, dependendo da permeabilidade da falha. Uma falha mais permeável causa precipitação da uraninita ao longo do plano da falha, enquanto uma menos permeável dá origem a precipitação da uraninita longe dela. Nenhuma mineralização económica do minério se forma quando nem permeabilidades muito baixas nem muito elevadas são atribuídas ao arenito ou embasamento, sugerindo que estas unidades parecem ter uma janela de permeabilidade ótima para a formação de depósitos de urânio. Parâmetros físico-químicos também exercem um controle adicional, tanto na localização quanto no grau dos depósitos de URD. Estes resultados indicam que a diferença de tamanho e grau de diferentes depósitos de URD pode resultar das variações do padrão de fluxo e de condições físico-químicas dos fluidos, causadas pela mudança de características estruturais e propriedades hidráulicas das unidades estratigráficas envolvidas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aben Resources Ltd (2015) Huard-Kirsch Lakes Uranium Project, Saskatchewan. www.abenresources.com/s/uranium.asp. Accessed December 2015

  • Adlakha EE, Hattori K, Zaluksi G, Kotzer T, Potter EG (2014) Alteration within the basement rocks associated with the P2 fault and the McArthur River uranium deposit, Athabasca Basin. Geol Surv Can Open File 7462. doi:10.4095/293364

  • Aghbelagh YB, Yang J (2014) Effect of graphite zone in the formation of unconformity-related uranium deposits: insights from reactive mass transport modeling. J Geochem Explor 144:12–27

    Article  Google Scholar 

  • Alexandre P, Kyser K (2012) Reductants involved in the formation of the Athabasca Basin unconformity-related uranium deposits. Joint annual meeting of the Geological Association of Canada-Mineralogical Association of Canada, Abstracts vol 35, GAC, St. John’s, NL, p 2

  • Alexandre P, Kyser K, Polito P, Thomas D (2005) Alteration mineralogy and stable isotope geochemistry of Paleoproterozoic basement-hosted unconformity-type deposits in the Athabasca Basin, Canada. Econ Geol 100:1547–1563

    Article  Google Scholar 

  • Alexandre P, Kyser K, Thomas D, Polito P, Marlat J (2009) Geochronology of unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada and their integration in the evolution of the basin. Miner Deposita 44:41–59

    Article  Google Scholar 

  • Alexandre P, Kyser K, Jiricka D, Witt G (2012) Formation and evolution of the Centennial unconformity-related uranium deposit in the South-Central Athabasca Basin, Canada. Econ Geol 107:385–400

    Article  Google Scholar 

  • Ayres DE, Wray EM, Farstad J, Ibrahim H (1983) Geology of the Midwest uranium deposit. In: Cameron EM (ed) Uranium exploration in Athabasca Basin, Saskatchewan. Geological Survey of Canada, Paper 82-11, GSC, Ottawa, pp 33–40

  • Bali E (2012) Uranium-ore giants. Nature Geosci 5:96–97

    Article  Google Scholar 

  • Barnes HL (1997) Geochemistry of hydrothermal ore deposits, vol 1. Wiley, Chichester, UK

  • Belitz K, Bredehoeft JD (1988) Hydrodynamics of Denver Basin: explanation of subnormal fluid pressures. Am Assoc Petrol Geol Bull 72:1334–1359

    Google Scholar 

  • Boiron MC, Cathelineau M, Richard A (2010) Fluid flows and metal deposition near basement/cover unconformity: lessons and analogies from Pb-Zn-F-Ba systems for the understanding of Proterozoic U deposits. Geofluids 10:270–292

    Google Scholar 

  • Bray CJ, Spooner ETC, Hall CM, York D, Bills TM, Krueger HW (1987) Laser probe 40Ar/39Ar and conventional K/Ar dating of illites associated with the McClean unconformity-related uranium deposits, northern Saskatchewan, Canada. Can J Earth Sci 24:10–23

    Article  Google Scholar 

  • Bray CJ, Spooner ETC, Longstaffe FJ (1988) Unconformity-related uranium mineralization, McClean deposits, North Saskatchewan, Canada: hydrogen and oxygen isotope geochemistry. Can Mineral 26:249–268

    Google Scholar 

  • Chi G, Xue C (2014) Hydrodynamic regime as major control on localization of uranium mineralization in sedimentary basins. Sci China Earth Sci 57:2928–2933

    Article  Google Scholar 

  • Chi G, Bosman S, Card C (2011) Fluid flow models related to uranium mineralization in the Athabasca basin: a review and new insights. Saskatchewan Geological Survey Open House, Abstract vol 4, SGS, Saskatoon, SK

  • Chi G, Bosman S, Card C (2013) Numerical modeling of fluid pressure regime in the Athabasca basin and implications for fluid flow models related to the unconformity-type uranium mineralization. J Geochem Explor 125:8–19

    Article  Google Scholar 

  • Cloutier J, Kyser K, Olivo GR, Alexandre P, Halaburda J (2009) The Millennium uranium deposit, Athabasca Basin, Saskatchewan, Canada: an atypical basement-hosted unconformity-related uranium deposit. Econ Geol 104:815–840

    Article  Google Scholar 

  • Cui T (2012) The formation mechanisms of unconformity-related uranium deposits: numerical modeling concerning the Thelon Basin. PhD Thesis, University of Windsor, Windsor, ON, Canada

  • Cui T, Yang J, Samson IM (2010) Numerical modeling of hydrothermal fluid flow in the Paleoproterozoic Thelon Basin, Nunavut, Canada. J Geochem Explor 106:69–76

    Article  Google Scholar 

  • Cui T, Yang J, Samson IM (2012a) Tectonic deformation and fluid flow: implications for the formation of unconformity-related uranium deposits. Econ Geol 107:147–163

    Article  Google Scholar 

  • Cui T, Yang J, Samson IM (2012b) Uranium transport across basement/cover interfaces by buoyancy-driven thermohaline convection: implications for the formation of unconformity-related uranium deposits. Am J Sci 312:994–1027

    Article  Google Scholar 

  • Cuney M (2009) The extreme diversity of uranium deposits. Miner Deposita 44:3–9

    Article  Google Scholar 

  • Dahlkampt FJ (1978) Geologic appraisal of the Key Lake U-Ni deposits, northern Saskatchewan. Econ Geol 73:1430–1449

    Article  Google Scholar 

  • De Veslud CLC, Cuney M, Lorilleux G, Royer JJ, Jébrak M (2009) 3D modeling of uranium-bearing solution-collapse breccias in Proterozoic sandstones (Athabasca Basin, Canada): metallogenic interpretations. Comput Geosci 35:92–107

    Article  Google Scholar 

  • Derome D, Cathelineau M, Cuney M, Fabre C, Lhomme T, Banks DA (2005) Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions. Econ Geol 100:1529–1545

    Article  Google Scholar 

  • Dieng S, Kyser K, Godin L (2013) Tectonic history of the North American shield recorded in uranium deposits in the Beaverlodge area, northern Saskatchewan, Canada. Precambrian Res 224:316–340

    Article  Google Scholar 

  • Evans DG, Nunn JA (1989) Free thermohaline convection in sediments surrounding a salt column. J Geophys Res 94:413–422

    Google Scholar 

  • Fayek M, Kyser TK (1997) Characterization of multiple fluid events and rare-earth-element mobility associated with formation of unconformity-type uranium deposits in the Athabasca Basin, Saskatchewan. Can Mineral 35:627–658

    Google Scholar 

  • Finch W (1996) Uranium provinces of North America: their definition, distribution, and models. US Geol Surv Bull 2141

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Fridleifsson IB, Bertani R, Huenges E, Lund JW, Ragnarsson A, Rybach L (2008) The possible role and contribution of geothermal energy to the mitigation of climate change. IPCC Scoping Meeting on Renewable Energy Sources, Luebeck, Germany, 20–25 January, 2008, pp 59–80

  • Garven G (1995) Continental-scale groundwater flow and geologic processes. Annu Rev Earth Planet Sci 23:89–117

    Article  Google Scholar 

  • Garven G, Freeze RA (1984) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits: 2. quantitative results. Am J Sci 284:1125–1174

    Article  Google Scholar 

  • Hajnal Z, Györfi I, Annesley IR, White DJ, Powell B, Koch R (2005) Seismic reflections outline complex structural setting of the uranium in the Athabasca Basin. In: Uranium production and raw materials for the nuclear fuel cycle: supply and demand, economics, the environment and energy security. Extended synopses, Report IAEA-CN-128, Proceedings of an international symposium held in Vienna, Austria, 20–24 June 2005

  • Hanor JS (1987) Kilometre-scale thermohaline overturn of pore fluid in the Louisiana Gulf Coast. Nature 327:501–503

    Article  Google Scholar 

  • Hiatt EE, Kyser TK, Fayek M, Polito P, Holk GJ, Riciputi LR (2007) Early quartz cements and evolution of paleohydraulic properties of basal sandstones in three Paleoproterozoic continental basins: evidence from in situ δ18O analysis of quartz cements. Chem Geol 238:19–37

    Article  Google Scholar 

  • Hitchon B (1969a) Fluid flow in the Western Canada Sedimentary Basin: 1. effect of topography. Water Resour Res 5:186–195

    Article  Google Scholar 

  • Hitchon B (1969b) Fluid flow in the Western Canada Sedimentary Basin: 2. effect of geology. Water Resour Res 5:460–469

    Article  Google Scholar 

  • Hoeve J, Quirt D (1984) Mineralization and host rock alteration in relation to clay mineral diagenesis and evolution of the middle Proterozoic, Athabasca basin, northern Saskatchewan, Canada. SKC technical report, Saskatchewan Research Counsel, Saskatoon, SK

  • Hoeve J, Sibbald TII (1978) On the genesis of Rabbit Lake and other unconformity-type uranium deposits in northern Saskatchewan, Canada. Econ Geol 73:1450–1473

    Article  Google Scholar 

  • Jefferson CW, Thomas DJ, Gandhi SS, Ramaekers P, Delaney G, Brisbin D, Cutts C, Quirt D, Portella P, Olson RA (2007) Unconformity associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Spec Pub 5, GAC, St. John’s, NL, pp 273–305

  • Kojima S, Takeda S, Kogita S (1994) Chemical factors controlling the solubility of uraninite and their significance in the genesis of unconformity-related uranium deposits. Miner Deposita 29:353–360

    Article  Google Scholar 

  • Komninou A, Sverjensky DA (1996) Geochemical modeling of the formation of an unconformity-type uranium deposit. Econ Geol 91:590–606

    Article  Google Scholar 

  • Kotzer TG, Kyser TK (1995) Petrogenesis of the Proterozoic Athabasca Basin, northern Saskatchewan, Canada, and its relation to diagenesis, hydrothermal uranium mineralization and paleohydrology. Chem Geol 120:45–89

    Article  Google Scholar 

  • Kuhn M, Gessner K (2006) Reactive transport model of silicification at the Mount Isa copper deposit, Australia. J Geochem Explor 89:195–198

    Article  Google Scholar 

  • Kuhn M, Gessner K (2009) Coupled process models of fluid flow and heat transfer in hydrothermal systems in three dimensions. Surv Geophy 30:193–210. doi:10.1007/s10712-009-9060-8

    Article  Google Scholar 

  • Kuhn M, Alt-Epping P, Gessner K, Wilde A (2004) Application of reactive transport modeling to the Mount Isa Copper mineralized system. Predictive Mineral Discovery CRC Conference, Barossa Valley, Australia, June 2004, pp 107–110

  • Kwon O, Ngwenya BT, Main IG, Elphick SC (2005) Permeability evolution during deformation of siliciclastic sandstones from Moab, Utah. In: Sorkhabi R, Tsuji Y (eds) Faults, fluid flow, and petroleum traps. AAPG Mem 85:219–236

  • Kyser K, Cuney M (2009) Unconformity-related uranium deposits. In: Cuney M, Kyser K (eds) Recent and not-so-recent developments in uranium deposits and implications for exploration, vol 39. Mineralogical Association of Canada, Quebec; Society for Geology Applied to Mineral Deposits, Geneva, pp 161–219

  • Kyser TK, Wilson MR, Ruhrmann G (1989) Stable isotope constraints on the role of graphite in the genesis of unconformity-type uranium deposits. Can J Sci 26:490–498

    Google Scholar 

  • Lai KH, Chen JH, Liu CW, Yang SY (2012) Effect of permeability–porosity functions on simulated morphological evolution of a chemical dissolution front. Hydrol Process. doi:10.1002/hyp.9492

    Google Scholar 

  • Lasaga AC (1984) Chemical kinetics of water–rock interactions. J Geophys Res 89:4009–4025

    Article  Google Scholar 

  • Li Z, Chi G, Bethune KM, Bosman SA, Card CD (2015) Geometric and hydrodynamic modeling and fluid-structural relationships in the Southeastern Athabasca Basin and significance for uranium mineralization. In: Potter EG, Wright DM (eds) Targeted geoscience initiative 4: unconformity-related uranium systems. Geol Surv Can Open File 7791:103–114. doi:10.4095/295776

  • Lonergan L, Wilkinson JJ (2000) Fractures, fluid flow and mineralization. EOS Trans Am Geophys Union 81(19), May 2000

  • Lorilleux G, Cuney M, Jébrak M, Rippert JC, Portella P (2003) Chemical brecciation processes in the Sue unconformity-type uranium deposits, Eastern Athabasca Basin (Canada). J Geochem Explor 80:241–258

    Article  Google Scholar 

  • McGill B (1999) The McArthur River deposit: a geological update. In: Uranium deposit studies and exploration techniques: Saskatchewan Geological Society Special Publication Number 14. In: Proceedings of MINEXPO’96 Symposium: Advances in Saskatchewan Geology and Mineral Exploration, Saskatoon, SK, 21–22 November 1996

  • McGill B, Marlatt J, Matthews R, Sopuck V, Homeniuk L, Hubregtse J (1993) The P2 North uranium deposit Saskatchewan, Canada. Exploration Mining Geology 2:321–331

    Google Scholar 

  • Mclellan JG, Oliver NHS, Schaubs PM (2004) Fluid flow in extensional environments: numerical modeling with an application to Hamersley iron ores. J Struct Geol 26:1157–1171

    Article  Google Scholar 

  • Mercadier J, Richard A, Boiron MC, Cathelineau M, Cuney M (2010) Migration of brines in the basement rocks of the Athabasca Basin through microfracture networks (P-Patch U deposit, Canada). Lithos 115:121–136

    Article  Google Scholar 

  • Miller AR (1995) Polymetallic unconformity-related uranium veins in lower Proterozoic Amer group, Pelly Lake map area, northern Thelon Basin, Churchill Province, Northwest Territories. In: Current Research 1995-C. Geological Survey of Canada, Ottawa, pp 151–161

  • Morichon E, Beaufort D, Allard T, Quirt D (2010) Tracing past migrations of uranium in Paleoproterozoic basins: new insights from radiation-induced defects in clay minerals. Geology 38:983–986

    Article  Google Scholar 

  • Narasimhan TN, Witherspoon PA (1976) An integrated finite difference method for analyzing fluid flow in porous media. Water Resour Res 12:57–64

    Article  Google Scholar 

  • Nogues JP, Fitts JP, Celia MA, Peters CA (2013) Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. Water Resour Res 49:6006–6021

    Article  Google Scholar 

  • Oliver NHS, McLellan JG, Hobbs BE, Cleverley JS, Ord A, Feltrin L (2006) Numerical models of extensional deformation, heat transfer, and fluid flow across basement-cover interfaces during basin-related mineralization. Econ Geol 101:1–31

    Article  Google Scholar 

  • Pascal M, Ansdell KM, Annesley IR (2015) Graphite-bearing and graphite-depleted basement rocks in the Dufferin Lake zone, south-central Athabasca Basin, Saskatchewan. In: Potter EG, Wright DM (eds) Targeted geoscience initiative 4: unconformity-related uranium systems. Geol Surv Can Open File 7791:83–92. doi:10.4095/295776

  • Peiffert C, Cuney M, Nguyen-Trung C (1994) Uranium in granitic magmas: part 1, experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-Na2CO3 system at 720–770°C, 2 kbar. Geochim Cosmochim Acta 58:2495–2507

    Article  Google Scholar 

  • Peiffert C, Nguyen-Trung C, Cuney M (1996) Uranium in granitic magmas: part 2, experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-NaX (X = Cl, F) system at 770°C, 2 kbar. Geochim Cosmochim Acta 60:1515–1529

    Article  Google Scholar 

  • Potter EG, Wright DM (2015) Targeted Geoscience Initiative 4: unconformity-related uranium systems. Geol Surv Can Open File 7791, 126 pp. doi:10.4095/295776

  • Quirt DH, Wasyliuk K (1997) Kaolinite, dickite, and other clay minerals in the Athabasca Group, Canada, and the Kombolgie Formation, Australia. In: Proceedings of the 11th International Clay Conference, Ottawa, ON, June 1997, p A61

  • Raffensperger JP, Garven G (1995a) The formation of unconformity-type uranium ore deposits 1: coupled ground water flow and heat transport modeling. Am J Sci 295:581–636

    Article  Google Scholar 

  • Raffensperger JP, Garven G (1995b) The formation of unconformity-type uranium ore deposits 2: coupled hydrochemical modeling. Am J Sci 295:639–696

    Article  Google Scholar 

  • Ramaekers P (1990) Geology of the Athabasca Group (Helikian) in northern Saskatchewan. Saskatchewan Energy and Mines, Saskatchewan Geological Survey report 195, SKG, Saskatoon, SK

  • Renac C, Kyser TK, Durocher K, Dreaver G, O’Connor T (2002) Comparison of diagenetic fluids in the Proterozoic Thelon and Athabasca Basins, Canada: implications for protracted fluid histories in stable intracratonic basins. Can J Earth Sci 39:113–132

    Article  Google Scholar 

  • Richard A, Pettke T, Cathelineau M, Boiron MC, Mercadier J, Cuney M, Derome D (2010) Brine–rock interaction in the Athabasca basement (McArthur River U deposit, Canada): consequences for fluid chemistry and uranium uptake. Terra Nov. 22:303–308

  • Richard A, Rozsypal C, Mercadier J, Cuney M, Boiron MC, Cathelineau M, Banks DA (2012) Giant uranium deposits formed from exceptionally uranium-rich acidic brines. Nature Geosci 5:142–146

    Article  Google Scholar 

  • Rutqvist J, Rinaldi AP, Cappa F, Moridis GJ (2013) Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. J Petrol Sci Eng 107:31–44

    Article  Google Scholar 

  • Senger RK, Fogg GE (1987) Regional underpressuring in deep brine aquifers, Palo Duro Basin, Texas: 1, effects of hydrostratigraphy and topography. Water Resour Res 23:1481–1493

    Article  Google Scholar 

  • Steefel CI, Lasaga AC (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with applications to reactive flow in single phase hydrothermal systems. Am J Sci 294:529–592

    Article  Google Scholar 

  • Thomas DJ, Matthews R, Sopuck V (2000) Athabasca Basin (Canada) unconformity-type uranium deposits: Exploration model, current mine developments and exploration directions. In: Cluer JK, Price JG, Struhsacker EM, Hardyman RF, Morris CL (eds) Geology and ore deposits 2000: the great basin and beyond. Proceedings of the Geological Society of Nevada Symposium, vol 1, Reno, NV, May 15–18, 2000, pp 103–126

  • Tremblay LP (1982) Geology of the uranium deposits related to sub-Athabasca unconformity, Saskatchewan. Geological Society of Canada paper 81-20, GSC, Ottawa

  • Vajdova V, Baud P, Wong T (2004) Permeability evolution during localized deformation in Bentheim sandstone. J Geophys Res. doi:10.1029/2003JB002942

    Google Scholar 

  • Walshe J (1986) A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Econ Geol 81:681–703

    Article  Google Scholar 

  • Wang K, Chi G, Bethune KM, Card CD (2015) Fluid composition, thermal conditions, fluid-structural relationships and graphite alteration of the Phoenix uranium deposit, Athabasca Basin, Saskatchewan. In: Potter EG, Wright DM (eds) Targeted geoscience initiative 4: unconformity-related uranium systems. Geol Surv Can Open File 7791, pp 93–102. doi:10.4095/295776

  • Wilde AR, Wall VG, Bloom MS (1985) Wall-rock alteration associated with unconformity-related uranium deposits Northern Territory, Australia: implications for uranium transport and depositional mechanisms. Int. Meeting ‘Concentration Mechanisms of Uranium in Geological Environments’, Nancy, France, October 1985, pp 231–239

  • Wilde AR, Bloom MS, Wall VJ (1989) Transport and deposition of gold, uranium, platinum-group elements in unconformity-related uranium deposits. Economic Geology Monograph, 6, SEG, Littleton, CO, pp637–650

  • Wilson MR, Kyser TK (1987) Stable isotope geochemistry of alteration associated with Key Lake uranium deposit, Canada. Econ Geol 82:1540–1557

    Article  Google Scholar 

  • Wolery TJ (1992) EQ3/6: software package for geochemical modeling of aqueous systems: package overview and installation guide (version 7.0). Lawrence Livermore National Laboratory report UCRL-MA-110662 PT I, Livermore, CA

  • Xu T, Pruess K (2001) Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. methodology. Am J Sci 301:16–33

    Article  Google Scholar 

  • Xu T, Sonnenthal E, Spycher N, Pruess K (2004) TOUGHREACT user’s guide: a simulation program for nonisothermal multiphase reactive geochemical transport in variably saturated geologic media. Earth Sciences Division, Lawrence Berkeley National Laboratory report CA 94720, LBNL, Berkeley, CA

Download references

Acknowledgements

This research was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grant to J. Yang (Grant No. CPI1237901). Two anonymous reviewers and the Associate Editor Matthew Currell are thanked for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwen Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghbelagh, Y.B., Yang, J. Role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium deposits: insights from reactive-flow modeling. Hydrogeol J 25, 465–486 (2017). https://doi.org/10.1007/s10040-016-1485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1485-9

Keywords

Navigation