Skip to main content
Log in

A review of integrated surface-subsurface numerical hydrological models

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Hydrological modeling, leveraging mathematical formulations to represent the hydrological cycle, is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology. These models serve a dual purpose: they validate theoretical robustness and applicability via observational data and project future trends, thereby bridging the understanding and prediction of natural processes. In rapid advancements in computational methodologies and the continuous evolution of observational and experimental techniques, the development of numerical hydrological models based on physically-based surface-subsurface process coupling have accelerated. Anchored in micro-scale conservation principles and physical equations, these models employ numerical techniques to integrate surface and subsurface hydrodynamics, thus replicating the macro-scale hydrological responses of watersheds. Numerical hydrological models have emerged as a leading and predominant trend in hydrological modeling due to their explicit representation of physical processes, heightened by their spatiotemporal resolution and reliance on interdisciplinary integration. This article focuses on the theoretical foundation of surface-subsurface numerical hydrological models. It includes a comparative and analytical discussion of leading numerical hydrological models, encompassing model architecture, numerical solution strategies, spatial representation, and coupling algorithms. Additionally, this paper contrasts these models with traditional hydrological models, thereby delineating the relative merits, drawbacks, and future directions of numerical hydrological modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott M B, Bathurst J C, Cunge J A, O’Connell P E, Rasmussen J. 1986. An introduction to the European hydrological system—Systeme hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system. J Hydrol, 87: 61–77

    Article  Google Scholar 

  • Ampadu B, Chappell N A, Kasei R A. 2013. Rainfall-riverflow modelling approaches: Making a choice of data-based mechanistic modelling approach for data limited catchments: A review. Can J Pure Appl Sci, 7: 2571–2580

    Google Scholar 

  • Anderman E R, Hill M C. 1999. A new multistage groundwater transport inverse method: Presentation, evaluation, and implications. Water Resour Res, 35: 1053–1063

    Article  CAS  Google Scholar 

  • Aquanty I. 2013. HydroGeoSphere User Manual

  • Arnold J G, Srinivasan R, Muttiah R S, Williams J R. 1998. Large area hydrologic modeling and assessment part I: Model development. J Am Water Resour Assoc, 34: 73–89

    Article  CAS  Google Scholar 

  • Aubert D, Loumagne C, Oudin L. 2003. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model. J Hydrol, 280: 145–161

    Article  Google Scholar 

  • Bao C, Li L, Shi Y, Duffy C. 2017. Understanding watershed hydrogeochemistry: 1. Development of RT-Flux-PIHM. Water Resour Res, 53: 2328–2345

    Article  CAS  Google Scholar 

  • Bartlett M S, Parolari A J, McDonnell J J, Porporato A. 2016. Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfallrunoff response. Water Resour Res, 52: 4608–4627

    Article  Google Scholar 

  • Becker A. 1992. Criteria for a hydrologically sound structuring of large scale land surface process models. In: O’Kane J. P., ed. Advances in Theoretical Hydrology. Amsterdam: Elsevier. 97–111

    Chapter  Google Scholar 

  • Bergström S. 1992. The HBV model—Its structure and applications. In: SMHI Reports Hydrology no 4. 33

  • Bernsen E, Dijkstra H A, Wubs F W. 2008. A method to reduce the spin-up time of ocean models. Ocean Model, 20: 380–392

    Article  Google Scholar 

  • Bertoldi G, Notarnicola C, Leitinger G, Endrizzi S, Zebisch M, Della Chiesa S, Tappeiner U. 2010. Topographical and ecohydrological controls on land surface temperature in an alpine catchment. Ecohydrology, 3: 189–204

    Article  Google Scholar 

  • Beven K. 1989. Changing ideas in hydrology—The case of physically-based models. J Hydrol, 105: 157–172

    Article  Google Scholar 

  • Beven K. 2006. On undermining the science? Hydrol Process, 20: 3141–3146

    Article  Google Scholar 

  • Beven K J. 2010. Preferential flows and travel time distributions: Defining adequate hypothesis tests for hydrological process models. Hydrol Process, 24: 1537–1547

    Article  Google Scholar 

  • Beven K. 2012. Rainfall-Runoff Modelling. Hoboken: Wiley. 472

    Book  Google Scholar 

  • Beven K J, Kirkby M J. 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sci Bull, 24: 43–69

    Article  Google Scholar 

  • Beven K, Binley A. 1992. The future of distributed models: Model calibration and uncertainty prediction. Hydrol Process, 6: 279–298

    Article  Google Scholar 

  • Beven K, Freer J. 2001. A dynamic TOPMODEL. Hydrol Process, 15: 1993–2011

    Article  Google Scholar 

  • Bixio A C, Gambolati G, Paniconi C, Putti M, Shestopalov V M, Bublias V N, Bohuslavsky A S, Kasteltseva N B, Rudenko Y F. 2002. Modeling groundwater-surface water interactions including effects of morphogenetic depressions in the Chernobyl exclusion zone. Env Geol, 42: 162–177

    Article  Google Scholar 

  • Blöschl G. 1999. Scaling issues in snow hydrology. Hydrol Process, 13: 2149–2175

    Article  Google Scholar 

  • Blöschl G, Grayson R B, Sivapalan M. 1995. On the representative elementary area (REA) concept and its utility for distributed rainfall-runoff modelling. Hydrol Process, 9: 313–330

    Article  Google Scholar 

  • Blöschl G, Bierkens M F P, Chambel A, Cudennec C, Destouni G, Fiori A, Kirchner J W, McDonnell J J, Savenije H H G, Sivapalan M, et al. 2019. Twenty-three unsolved problems in hydrology (UPH)—A community perspective. Hydrological Sci J, 64: 1141–1158

    Article  Google Scholar 

  • Burnash R J, Singh V. 1995. The NWS River Forecast System-catchment modeling. In: Singh V P. ed. Computer Models of Watershed Hydrology. Colorado: Water Resources Publications. 311–366

    Google Scholar 

  • Camporese M, Paniconi C, Putti M, Salandin P. 2009. Ensemble Kalman filter data assimilation for a process-based catchment scale model of surface and subsurface flow. Water Resour Res, 45: 1–4

    Article  Google Scholar 

  • Camporese M, Paniconi C, Putti M, Orlandini S. 2010. Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resour Res, 46: 737–744

    Article  Google Scholar 

  • Cheng G D, Li X. 2015. Integrated research methods in watershed science. Sci China Earth Sci, 58: 1159–1168

    Article  Google Scholar 

  • Chen X, Yu Z, Yi P, Aldahan A, Hwang H T, Sudicky E A. 2023. Disentangling runoff generation mechanisms: Combining isotope tracing with integrated surface/subsurface simulation. J Hydrol, 617: 129149

    Article  CAS  Google Scholar 

  • Chiesa S D, Bertoldi G, Niedrist G, Obojes N, Endrizzi S, Albertson J D, Wohlfahrt G, Hörtnagl L, Tappeiner U. 2014. Modelling changes in grassland hydrological cycling along an elevational gradient in the Alps. Ecohydrology, 7: 1453–1473

    Article  Google Scholar 

  • Clark M P, Kavetski D, Fenicia F. 2011. Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour Res, 47: W09301

    Article  Google Scholar 

  • Clark M P, Fan Y, Lawrence D M, Adam J C, Bolster D, Gochis D J, Hooper R P, Kumar M, Leung L R, Mackay D S, Maxwell R M, Shen C, Swenson S C, Zeng X. 2015. Improving the representation of hydrologic processes in Earth System Models. Water Resour Res, 51: 5929–5956

    Article  Google Scholar 

  • Clark M P, Schaefli B, Schymanski S J, Samaniego L, Luce C H, Jackson B M, Freer J E, Arnold J R, Moore R D, Istanbulluoglu E, Ceola S. 2016. Improving the theoretical underpinnings of process-based hydrologic models. Water Resour Res, 52: 2350–2365

    Article  Google Scholar 

  • Clark M P, Bierkens M F P, Samaniego L, Woods R A, Uijlenhoet R, Bennett K E, Pauwels V R N, Cai X, Wood A W, Peters-Lidard C D. 2017. The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism. Hydrol Earth Syst Sci, 21: 3427–3440

    Article  Google Scholar 

  • Cobourn K M, Carey C C, Boyle K J, Duffy C, Dugan H A, Farrell K J, Fitchett L, Hanson P C, Hart J A, Henson V R, Hetherington A L, Kemanian A R, Rudstam L G, Shu L, Soranno P A, Sorice M G, Stachelek J, Ward N K, Weathers K C, Weng W, Zhang Y. 2018. From concept to practice to policy: Modeling coupled natural and human systems in lake catchments. Ecosphere, 9: e02209

    Article  Google Scholar 

  • Cooley R L. 1971. A finite difference method for unsteady flow in variably saturated porous media: Application to a single pumping well. Water Resour Res, 7: 1607–1625

    Article  Google Scholar 

  • Courant R, Friedrichs K, Lewy H. 1928. Über die partiellen differenzengleichungen der mathematischen physik. Math Ann, 100: 32–74

    Article  Google Scholar 

  • Cuntz M, Mai J, Zink M, Thober S, Kumar R, Schäfer D, Schrön M, Craven J, Rakovec O, Spieler D, Prykhodko V, Dalmasso G, Musuuza J, Langenberg B, Attinger S, Samaniego L. 2015. Computationally inexpensive identification of noninformative model parameters by sequential screening. Water Resour Res, 51: 6417–6441

    Article  Google Scholar 

  • Dall’Amico M. 2010. Coupled water and heat transfer in permafrost modeling. Dissertation for Doctoral Degree. Trento: University of Trento

    Google Scholar 

  • Dall’Amico M, Endrizzi S, Gruber S, Rigon R. 2011. A robust and energy-conserving model of freezing variably-saturated soil. Cryosphere, 5: 469–484

    Article  Google Scholar 

  • Delfs J O, Blumensaat F, Wang W, Krebs P, Kolditz O. 2012. Coupling hydrogeological with surface runoff model in a Poltva case study in Western Ukraine. Environ Earth Sci, 65: 1439–1457

    Article  Google Scholar 

  • Delfs J O, Park C H, Kolditz O, Kalbus E. 2009. A physically based model concept for transport modelling in coupled hydrosystems. Grundwasser, 14: 219–235

    Article  Google Scholar 

  • Dooge J C I. 1988. Hydrology past and present. J Hydraulic Res, 26: 5–26

    Article  Google Scholar 

  • Duffy C J. 2017. The terrestrial hydrologic cycle: An historical sense of balance. WIREs Water, 4: e1216

    Article  Google Scholar 

  • Ebel B A, Loague K. 2006. Physics-based hydrologic-response simulation: Seeing through the fog of equifinality. Hydrol Process, 20: 2887–2900

    Article  Google Scholar 

  • Endrizzi S, Gruber S, Dall’Amico M, Rigon R. 2014. GEOtop 2.0: Simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects. Geosci Model Dev, 7: 2831–2857

    Article  Google Scholar 

  • Ewen J, Parkin G. 1996. Validation of catchment models for predicting land-use and climate change impacts. 1. Method. J Hydrol, 175: 583–594

    Article  Google Scholar 

  • Ewen J, Parkin G, O’Connell P E. 2000. SHETRAN: Distributed river basin flow and transport modeling system. J Hydrol Eng, 5: 250–258

    Article  Google Scholar 

  • Farthing M W, Ogden F L. 2017. Numerical solution of Richards’ equation: A review of advances and challenges. Soil Sci Soc Amer J, 81: 1257–1269

    Article  CAS  Google Scholar 

  • Fatichi S, Vivoni E R, Ogden F L, Ivanov V Y, Mirus B, Gochis D, Downer C W, Camporese M, Davison J H, Ebel B, Jones N, Kim J, Mascaro G, Niswonger R, Restrepo P, Rigon R, Shen C, Sulis M, Tarboton D. 2016. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. J Hydrol, 537: 45–60

    Article  Google Scholar 

  • Fenicia F, Kavetski D, Savenije H H G. 2011. Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development. Water Resour Res, 47: 1–3

    Article  Google Scholar 

  • Flipo N, Gallois N, Schuite J. 2023. Regional coupled surface-subsurface hydrological model fitting based on a spatially distributed minimalist reduction of frequency domain discharge data. Geosci Model Dev, 16: 353–381

    Article  Google Scholar 

  • Franchini M, Pacciani M. 1991. Comparative analysis of several conceptual rainfall-runoff models. J Hydrol, 122: 161–219

    Article  Google Scholar 

  • Freeze R A, Harlan R L. 1969. Blueprint for a physically-based, digitally-simulated hydrologic response model. J Hydrol, 9: 237–258

    Article  Google Scholar 

  • Furman A. 2008. Modeling coupled surface-subsurface flow processes: A review. Vadose Zone J, 7: 741–756

    Article  Google Scholar 

  • Gao H K, Zhao F. 2020. A review of global hydrological models: The opportunities, challenges and outlook (in Chinese). J Glaciol Geocryol, 42: 224–233

    Google Scholar 

  • Garijo D, Khider D, Ratnakar V, Gil Y, Deelman E, Ferreira da Silva R, Knoblock C, Chiang Y, Pham M, Pujara J, Vu B, Feldman D, Mayani R, Cobourn K, Duffy C, Kemanian A, Shu L, Kumar V, Khandelwal A, Tayal K, Peckham S, Stoica M, Dabrowski A, Hardesty-Lewis D, Pierce S. 2019. An intelligent interface for integrating climate, hydrology, agriculture, and socioeconomic models. Marina del Ray: Proceedings of the 24th International Conference on Intelligent User Interfaces: Companion. 111–112

  • Georgakakos K P, Seo D J, Gupta H, Schaake J, Butts M B. 2004. Towards the characterization of streamflow simulation uncertainty through multimodel ensembles. J Hydrol, 298: 222–241

    Article  Google Scholar 

  • Gharari S, Hrachowitz M, Fenicia F, Gao H, Savenije H H G. 2014. Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrol Earth Syst Sci, 18: 4839–4859

    Article  Google Scholar 

  • Gil Y, Garijo D, Khider D, Knoblock C A, Ratnakar V, Osorio M, Vargas H, Pham M, Pujara J, Shbita B, Vu B, Chiang Y Y, Feldman D, Lin Y, Song H, Kumar V, Khandelwal A, Steinbach M, Tayal K, Xu S, Pierce S A, Pearson L, Hardesty-Lewis D, Deelman E, Silva R F D, Mayani R, Kemanian A R, Shi Y, Leonard L, Peckham S, Stoica M, Cobourn K, Zhang Z, Duffy C, Shu L. 2021. Artificial intelligence for modeling complex systems: Taming the complexity of expert models to improve decision making. ACM Trans Interact Intell Syst, 11: 1–49

    Article  Google Scholar 

  • Gochis D J, Barlage M, Dugger A, FitzGerald K, Karsten L, McAllister M, McCreight J, Mills J, RafieeiNasab A, Read L. 2018. The WRF-Hydro modeling system technical description (Version 5.0). NCAR-TN

  • Gou J J, Miao C Y, Xu Z X, Duan Q Y. 2022. Parameter uncertainty analysis for large-scale hydrological model: Challenges and comprehensive study framework (in Chinese). Adv Water Sci, 33: 327–335

    Google Scholar 

  • Grayson R B, Moore I D, McMahon T A. 1992. Physically based hydrologic modeling: 2. Is the concept realistic? Water Resour Res, 28: 2659–2666

    Article  Google Scholar 

  • Han F, Zheng Y, Tian Y, Li X, Zheng C, Li X. 2021. Accounting for field-scale heterogeneity in the ecohydrological modeling of large arid river basins: Strategies and relevance. J Hydrol, 595: 126045

    Article  Google Scholar 

  • Hansen N. 2016. The CMA evolution strategy: A comparing review. In: Lozano J A, Larrañaga P, Inza I, Bengoetxea E, eds. Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing. Berlin: Springer

    Google Scholar 

  • Haque A, Salama A, Lo K, Wu P. 2021. Surface and groundwater interactions: A review of coupling strategies in detailed domain models. Hydrology, 8: 35

    Article  Google Scholar 

  • Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming. J Clim, 19: 5686–5699

    Article  Google Scholar 

  • Hrachowitz M, Clark M P. 2017. HESS opinions: The complementary merits of competing modelling philosophies in hydrology. Hydrol Earth Syst Sci, 21: 3953–3973

    Article  Google Scholar 

  • Hu L T, Wang Z J, Zhao J S, Ma Y H. 2007. Advances in the interactions and integrated model between surface water and groundwater (in Chinese). J Hydraul Eng, 38: 54–59

    Google Scholar 

  • Hu L, Zhang M, Yang Z, Fan Y, Li J, Wang H, Lubale C. 2020. Estimating dewatering in an underground mine by using a 3D finite element model. PLoS ONE, 15: e0239682

    Article  CAS  Google Scholar 

  • Ivanov V Y, Vivoni E R, Bras R L, Entekhabi D. 2004. Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resour Res, 40: 1–23

    Article  Google Scholar 

  • Ivanov V Y, Bras R L, Vivoni E R. 2008. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks. Water Resour Res, 44: W03429

    Google Scholar 

  • Jia Y, Ni G, Kawahara Y, Suetsugi T. 2001. Development of WEP model and its application to an urban watershed. Hydrol Process, 15: 2175–2194

    Article  Google Scholar 

  • Jones J P, Sudicky E A, Brookfield A E, Park Y. 2006. An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow. Water Resour Res, 42: 1–5

    Article  CAS  Google Scholar 

  • Keating E H, Doherty J, Vrugt J A, Kang Q. 2010. Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality. Water Resour Res, 46: 1–8

    Article  Google Scholar 

  • Kim K B, Kwon H H, Han D. 2018. Exploration of warm-up period in conceptual hydrological modelling. J Hydrol, 556: 194–210

    Article  Google Scholar 

  • Kollet S J, Maxwell R M. 2006. Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour, 29: 945–958

    Article  Google Scholar 

  • Kollet S J, Maxwell R M. 2008. Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour Res, 44: W02402

    Article  Google Scholar 

  • Kollet S, Sulis M, Maxwell R M, Paniconi C, Putti M, Bertoldi G, Coon E T, Cordano E, Endrizzi S, Kikinzon E, Mouche E, Mügler C, Park Y, Refsgaard J C, Stisen S, Sudicky E. 2017. The integrated hydrologic model intercomparison project, IH-MIP2 A second set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour Res, 53: 867–890

    Article  Google Scholar 

  • Krause S, Boano F, Cuthbert M O, Fleckenstein J H, Lewandowski J. 2014. Understanding process dynamics at aquifer-surface water interfaces: An introduction to the special section on new modeling approaches and novel experimental technologies. Water Resour Res, 50: 1847–1855

    Article  Google Scholar 

  • Kuffour B N O, Engdahl N B, Woodward C S, Condon L E, Kollet S, Maxwell R M. 2020. Simulating coupled surface-subsurface flows with ParFlow v3.5.0: Capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model. Geosci Model Dev, 13: 1373–1397

    Article  Google Scholar 

  • Kumar M, Duffy C J, Salvage K M. 2009. A second-order accurate, Finite Volume-Based, Integrated Hydrologic Modeling (FIHM) framework for simulation of surface and subsurface flow. Vadose Zone J, 8: 873–890

    Article  Google Scholar 

  • Ladwig R, Hanson P C, Dugan H A, Carey C C, Zhang Y, Shu L, Duffy C J, Cobourn K M. 2021. Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 years. Hydrol Earth Syst Sci, 25: 1009–1032

    Article  CAS  Google Scholar 

  • Leavesley G H, Lichty R W W, Troutman B M M, Saindon L G G. 1983. Precipitation-runoff modeling system. User’s Manual. Water-Resources Investigations Report, Denver, Colorado. 207

  • Leonard L, Duffy C J. 2013. Essential Terrestrial Variable data workflows for distributed water resources modeling. Environ Model Software, 50: 85–96

    Article  Google Scholar 

  • Levine J B, Salvucci G D. 1999. Equilibrium analysis of groundwater-vadose zone interactions and the resulting spatial distribution of hydrologic fluxes across a Canadian Prairie. Water Resour Res, 35: 1369–1383

    Article  Google Scholar 

  • Li L, Bao C, Sullivan P L, Brantley S, Shi Y, Duffy C. 2017. Understanding watershed hydrogeochemistry: 2. Synchronized hydrological and geochemical processes drive stream chemostatic behavior. Water Resour Res, 53: 2346–2367

    Article  CAS  Google Scholar 

  • Li X. 2013. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems. Sci China Earth Sci, 57: 80–87

    Article  Google Scholar 

  • Li X, Cheng G D, Kang E S, Xu Z M, Nan Z T, Zhou J, Han X J, Wang S G. 2010. Digital Heihe River Basin. 3: Model Integration (in Chinese). Adv Earth Sci, 25: 851

    Google Scholar 

  • Li X, Li X W, Li Z Y, Wang J, Ma M G, Liu Q, Xiao Q. 2012. Progresses on the watershed allied telemetry experimental research (WATER) (in Chinese). Remote Sens Technol Appl, 27: 637–649

    Google Scholar 

  • Li X, Cheng G, Lin H, Cai X, Fang M, Ge Y, Hu X, Chen M, Li W. 2018. Watershed system model: The essentials to model complex human-nature system at the river basin scale. J Geophys Res-Atmos, 123: 3019–3034

    Article  Google Scholar 

  • Li X, Cheng G, Wang L, Wang J, Ran Y, Che T, Li G, He H, Zhang Q, Jiang X, Zou Z, Zhao G. 2021. Boosting geoscience data sharing in China. Nat Geosci, 14: 541–542

    Article  CAS  Google Scholar 

  • Li X, Liu S M, Liu Q H, Xiao Q, Che T, Ma M G, Jin R, Ran Y H, Wen J H, Xu Z W, Li Z Y. 2023. Heihe remote sensing experiments: Retrospect and prospect. Natl Remote Sens Bull, 27: 224–248

    Article  Google Scholar 

  • Liang X, Lettenmaier D P, Wood E F, Burges S J. 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res, 99: 14415–14428

    Article  Google Scholar 

  • Lindström G, Pers C, Rosberg J, Strömqvist J, Arheimer B. 2010. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol Res, 41: 295–319

    Article  Google Scholar 

  • Madsen H, Wilson G, Ammentorp H C. 2002. Comparison of different automated strategies for calibration of rainfall-runoff models. J Hydrol, 261: 48–59

    Article  Google Scholar 

  • Markstrom S L, Niswonger R G, Regan R S, Prudic D E, Barlow P M. 2008. GSFLOW-Coupled Ground-water and Surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MOD-FLOW-2005), US Geological Survey techniques and methods. 240

  • Mascaro G, Vivoni E R, Méndez-Barroso L A. 2015. Hyperresolution hydrologic modeling in a regional watershed and its interpretation using empirical orthogonal functions. Adv Water Resour, 83: 190–206

    Article  Google Scholar 

  • Maxwell R M, Miller N L. 2005. Development of a coupled land surface and groundwater model. J Hydrometeorol, 6: 233–247

    Article  Google Scholar 

  • Maxwell R M, Kollet S J. 2008. Quantifying the effects of three-dimensional subsurface heterogeneity on Hortonian runoff processes using a coupled numerical, stochastic approach. Adv Water Resour, 31: 807–817

    Article  Google Scholar 

  • Maxwell R M, Condon L E. 2016. Connections between groundwater flow and transpiration partitioning. Science, 353: 377–380

    Article  CAS  Google Scholar 

  • Maxwell R M, Putti M, Meyerhoff S, Delfs J, Ferguson I M, Ivanov V, Kim J, Kolditz O, Kollet S J, Kumar M, Lopez S, Niu J, Paniconi C, Park Y, Phanikumar M S, Shen C, Sudicky E A, Sulis M. 2014. Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour Res, 50: 1531–1549

    Article  Google Scholar 

  • Maxwell R M, Condon L E, Kollet S J. 2015. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci Model Dev, 8: 923–937

    Article  Google Scholar 

  • Mazzia A, Putti M. 2005. High order Godunov mixed methods on tetrahedral meshes for density driven flow simulations in porous media. J Comput Phys, 208: 154–174

    Article  Google Scholar 

  • McDonald M G, Harbaugh A W. 1984. A modular three-dimensional finite-difference groundwater flow model. U.S. Geological Survey Open-File Report. 83–875

  • McDonnell J J, Sivapalan M, Vaché K, Dunn S, Grant G, Haggerty R, Hinz C, Hooper R, Kirchner J, Roderick M L, Selker J, Weiler M. 2007. Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resour Res, 43: 1–6

    Article  Google Scholar 

  • Milly P C D, Betancourt J, Falkenmark M, Hirsch R M, Kundzewicz Z W, Lettenmaier D P, Stouffer R J. 2008. Climate change: Stationarity is dead: Whither water management. Science, 319: 573–574

    Article  CAS  Google Scholar 

  • Mirus B B, Loague K, Cristea N C, Burges S J, Kampf S K. 2011. A synthetic hydrologic-response dataset. Hydrol Process, 25: 3688–3692

    Article  Google Scholar 

  • Montanari A. 2007. What do we mean by ‘uncertainty’? The need for a consistent wording about uncertainty assessment in hydrology. Hydrol Process, 21: 841–845

    Article  Google Scholar 

  • Mukherjee A, Bhanja S N, Wada Y. 2018. Groundwater depletion causing reduction of baseflow triggering Ganges river summer drying. Sci Rep, 8: 12049

    Article  Google Scholar 

  • Nearing G S, Gupta H V. 2015. The quantity and quality of information in hydrologic models. Water Resour Res, 51: 524–538

    Article  Google Scholar 

  • Newman A J, Mizukami N, Clark M P, Wood A W, Nijssen B, Nearing G. 2017. Benchmarking of a physically based hydrologic model. J Hydrometeorol, 18: 2215–2225

    Article  Google Scholar 

  • Niswonger R G, Panday S, Ibaraki M. 2011. MODFLOW-NWT, A Newton Formulation for MODFLOW-2005, https://doi.org/10.5066/F7XP7317, 2011

  • Nijzink R C, Samaniego L, Mai J, Kumar R, Thober S, Zink M, Schäfer D, Savenije H H G, Hrachowitz M. 2016. The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed hydrological models. Hydrol Earth Syst Sci, 20: 1151–1176

    Article  Google Scholar 

  • Novotny V. 2018. Watershed models. In: Jorgensen S V, Fath B, eds. Encyclopedia of Ecology. Amsterdam: Elsevier. 221–232

    Google Scholar 

  • Ntona M M, Busico G, Mastrocicco M, Kazakis N. 2022. Modeling groundwater and surface water interaction: An overview of current status and future challenges. Sci Total Environ, 846: 157355

    Article  CAS  Google Scholar 

  • O’Connell P E, Todini E. 1996. Modelling of rainfall, flow and mass transport in hydrological systems: An overview. J Hydrol, 175: 3–16

    Article  Google Scholar 

  • Orth R, Staudinger M, Seneviratne S I, Seibert J, Zappa M. 2015. Does model performance improve with complexity? A case study with three hydrological models. J Hydrol, 523: 147–159

    Article  Google Scholar 

  • Painter S L, Moulton J D, Wilson C J. 2013. Modeling challenges for predicting hydrologic response to degrading permafrost. Hydrogeol J, 21: 221–224

    Article  Google Scholar 

  • Painter S L, Coon E T, Atchley A L, Berndt M, Garimella R, Moulton J D, Svyatskiy D, Wilson C J. 2016. Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations. Water Resour Res, 52: 6062–6077

    Article  Google Scholar 

  • Panday S, Huyakorn P S. 2004. A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv Water Resour, 27: 361–382

    Article  Google Scholar 

  • Paniconi C, Putti M. 2015. Physically based modeling in catchment hydrology at 50: Survey and outlook. Water Resour Res, 51: 7090–7129

    Article  Google Scholar 

  • Park S, Nielsen A, Bailey R T, Trolle D, Bieger K. 2019. A QGIS-based graphical user interface for application and evaluation of SWAT-MODFLOW models. Environ Model Software, 111: 493–497

    Article  Google Scholar 

  • Pechlivanidis I G, Jackson B M, Mcintyre N R, Wheater H S. 2011. Catchment scale hydrological modelling: A review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Global Nest J, 13: 193–214

    Google Scholar 

  • Peckham S D, Stoica M, Jafarov E, Endalamaw A, Bolton W R. 2017. Reproducible, component-based modeling with TopoFlow, a spatial hydrologic modeling toolkit. Earth Space Sci, 4: 377–394

    Article  Google Scholar 

  • Peel M C, McMahon T A. 2020. Historical development of rainfall-runoff modeling. WIREs Water, 7: e1471

    Article  Google Scholar 

  • Perrin C, Michel C, Andréassian V. 2001. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J Hydrol, 242: 275–301

    Article  Google Scholar 

  • Perrin C, Michel C, Andréassian V. 2003. Improvement of a parsimonious model for streamflow simulation. J Hydrol, 279: 275–289

    Article  Google Scholar 

  • Peters N E, Meybeck M. 2000. Water quality degradation effects on freshwater availability: Impacts of human activities. Water Int, 25: 185–193

    Article  Google Scholar 

  • Pomeroy J W, Gray D M, Brown T, Hedstrom N R, Quinton W L, Granger R J, Carey S K. 2007. The cold regions hydrological model: A platform for basing process representation and model structure on physical evidence. Hydrol Process, 21: 2650–2667

    Article  Google Scholar 

  • Povich T J, Dawson C N, Farthing M W, Kees C E. 2013. Finite element methods for variable density flow and solute transport. Comput Geosci, 17: 529–549

    Article  Google Scholar 

  • Qu Y, Duffy C J. 2007. A semidiscrete finite volume formulation for multiprocess watershed simulation. Water Resour Res, 43: W08419

    Article  Google Scholar 

  • Rahman M M, Lu M. 2015. Model spin-up behavior for wet and dry basins: A case study using the xinanjiang model. Water, 7: 4256–4273

    Article  Google Scholar 

  • Razavi S, Tolson B A. 2013. An efficient framework for hydrologic model calibration on long data periods. Water Resour Res, 49: 8418–8431

    Article  Google Scholar 

  • Refsgaard J C, Storm B. 1996. Construction, calibration and validation of hydrological models. In: Abbott M B, Refsgaard J C, eds. Distributed Hydrological Modelling. Dordrecht: Springer. 41–54

    Google Scholar 

  • Refsgaard J C, van der Sluijs J P, Brown J, van der Keur P. 2006. A framework for dealing with uncertainty due to model structure error. Adv Water Resour, 29: 1586–1597

    Article  Google Scholar 

  • Ren L L, Liu X R, Hao Z C. 1996. A review on scale issues in hydrology (in Chinese). Adv Water Sci, 7: 87–99

    Google Scholar 

  • Ren L L, Jiang S H, Yuan F, Yong B, Gong L Y, Yuan S S. 2011. Evolution of methodology in hydrology and its explanation (in Chinese). Adv Water Sci, 22: 586–592

    Google Scholar 

  • Rigon R, Bertoldi G, Over T M. 2006. GEOtop: A distributed hydrological model with coupled water and energy budgets. J Hydrometeorol, 7: 371–388

    Article  Google Scholar 

  • Samaniego L, Kumar R, Attinger S. 2010. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour Res, 46: W05523

    Article  Google Scholar 

  • Savenije H H G. 2001. Equifinality, a blessing in disguise? Hydrol Process, 15: 2835–2838

    Article  Google Scholar 

  • Savenije H H G. 2010. HESS opinions “topography driven conceptual modelling (FLEX-Topo)”. Hydrol Earth Syst Sci, 14: 2681–2692

    Article  Google Scholar 

  • Schulla J, Jasper K. 1998. Modellbeschreibung WaSiM-ETH. 1–152

  • Sebben M L, Werner A D, Liggett J E, Partington D, Simmons C T. 2013. On the testing of fully integrated surface-subsurface hydrological models. Hydrol Process, 27: 1276–1285

    Article  Google Scholar 

  • Seck A, Welty C, Maxwell R M. 2015. Spin-up behavior and effects of initial conditions for an integrated hydrologic model. Water Resour Res, 51: 2188–2210

    Article  Google Scholar 

  • Semenova O, Beven K. 2015. Barriers to progress in distributed hydrological modelling. Hydrol Process, 29: 2074–2078

    Article  Google Scholar 

  • Shen C, Phanikumar M S. 2010. A process-based, distributed hydrologic model based on a large-scale method for surface-subsurface coupling. Adv Water Resour, 33: 1524–1541

    Article  Google Scholar 

  • Shen C, Niu J, Phanikumar M S. 2013. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model. Water Resour Res, 49: 2552–2572

    Article  Google Scholar 

  • Sherman L K. 1932. Streamflow from rainfall by the unit-graph method. Eng News Rec, 108: 801–805

    Google Scholar 

  • Shi Y, Davis K J, Duffy C J, Yu X. 2013. Development of a coupled land surface hydrologic model and evaluation at a critical zone observatory. J Hydrometeorol, 14: 1401–1420

    Article  Google Scholar 

  • Shi Y, Davis K J, Zhang F, Duffy C J, Yu X. 2014. Parameter estimation of a physically based land surface hydrologic model using the ensemble Kalman filter: A synthetic experiment. Water Resour Res, 50: 706–724

    Article  Google Scholar 

  • Shi Y, Davis K J, Zhang F, Duffy C J, Yu X. 2015. Parameter estimation of a physically-based land surface hydrologic model using an ensemble Kalman filter: A multivariate real-data experiment. Adv Water Resour, 83: 421–427

    Article  Google Scholar 

  • Shi Y, Eissenstat D M, He Y, Davis K J. 2018. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory. Ecol Model, 380: 8–21

    Article  CAS  Google Scholar 

  • Shu L, Ullrich P A, Duffy C J. 2020. Simulator for Hydrologic Unstructured Domains (SHUD v1.0): Numerical modeling of watershed hydrology with the finite volume method. Geosci Model Dev, 13: 2743–2762

    Article  Google Scholar 

  • Shu L, Ullrich P, Meng X, Duffy C, Chen H, Li Z. 2024a. rSHUD v2.0: Advancing the simulator for hydrologic unstructured domains and unstructured hydrological modeling in the R environment. Geosci Model Dev, 17: 497–527

    Article  Google Scholar 

  • Shu L, Li X, Chang Y, Meng X, Chen H, Qi Y, Wang H, Li Z, Lyu S. 2024b. Advancing understanding of lake-watershed hydrology: A fully coupled numerical model illustrated by Qinghai Lake. Hydrol Earth Syst Sci, doi: https://doi.org/10.5194/hess-28-1477-2024

  • Shu L C, Gong R, Luan J W, Gong J S, Tao X H, Zhao G Z, Tao Y Z. 2022. A integrated method to quantify flow exchanges between surface water and groundwater: Take Suzhou section of the Xinbian River as an example (in Chinese). Adv Water Sci, 33: 57–67

    Google Scholar 

  • Shu L L, Chang Y, Wang J, Chen H, Li Z G, Zhao L, Meng X H. 2022. A brief review of numerical distributed hydrological model SHUD (in Chinese). Adv Water Sci, 37: 680–691

    Google Scholar 

  • Simoni S, Zanotti F, Bertoldi G, Rigon R. 2008. Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS. Hydrol Process, 22: 532–545

    Article  Google Scholar 

  • Šimůnek J, van Genuchten M T, Šejna M. 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J, 7: 587–600

    Article  Google Scholar 

  • Singh V P. 2018. Hydrologic modeling: Progress and future directions. Geosci Lett, 5: 15

    Article  Google Scholar 

  • Sivapalan M. 2003. Process complexity at hillslope scale, process simplicity at the watershed scale: Is there a connection? Hydrol Process, 17: 1037–1041

    Article  Google Scholar 

  • Sivapalan M. 2018. From engineering hydrology to earth system science: Milestones in the transformation of hydrologic science. Hydrol Earth Syst Sci, 22: 1665–1693

    Article  Google Scholar 

  • Sivapalan M, Blöschl G, Zhang L, Vertessy R. 2003. Downward approach to hydrological prediction. Hydrol Process, 17: 2101–2111

    Article  Google Scholar 

  • Smith M B, Seo D J, Koren V I, Reed S M, Zhang Z, Duan Q, Moreda F, Cong S. 2004. The distributed model intercomparison project (DMIP): Motivation and experiment design. J Hydrol, 298: 4–26

    Article  Google Scholar 

  • Su F G. 2001. Study on the macro-scale hydrological model and its coupling with the land surface processes model (in Chinese). Doctoral Dissertation. Nanjing: Hohai University

    Google Scholar 

  • Sulis M, Paniconi C, Marrocu M, Huard D, Chaumont D. 2012. Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions. Water Resour Res, 48: W12510

    Article  Google Scholar 

  • Sun A, Zhou J, Yu Z, Jin H, Sheng Y, Yang C. 2019. Three-dimensional distribution of permafrost and responses to increasing air temperatures in the head waters of the Yellow River in High Asia. Sci Total Environ, 666: 321–336

    Article  CAS  Google Scholar 

  • Sun A, Zhou J, Yu Z, Su X, Song S, Wu Q, Schulla J. 2023. Quantified spatial-temporal variation of the fine-scale frozen soils during 1980–2014 in the headwaters of the Yellow River (HWYR) in High Mountain Asia. Catena, 222: 106836

    Article  Google Scholar 

  • Tang Q H, Liu X C, Li Z, Yun X B, Zhang X J, Yu Q, Li J, Zhang Y Y, Cui H J, Sun S A, Zhang C, Tang Y, Leng G Y. 2019. Integrated water systems model for terrestrial water cycle simulation (in Chinese). Adv Earth Sci, 34: 115

    Google Scholar 

  • Tian Y, Zheng Y, Wu B, Wu X, Liu J, Zheng C. 2015. Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environ Model Software, 63: 170–184

    Article  Google Scholar 

  • Tian Y, Zheng Y, Han F, Zheng C, Li X. 2018. A comprehensive graphical modeling platform designed for integrated hydrological simulation. Environ Model Software, 108: 154–173

    Article  Google Scholar 

  • Tijerina-Kreuzer D, Condon L, FitzGerald K, Dugger A, O’Neill M M, Sampson K, Gochis D, Maxwell R. 2021. Continental hydrologic intercomparison project, phase 1: A large-scale hydrologic model comparison over the continental United States. Water Resour Res, 57: e2020WR028931

    Article  Google Scholar 

  • Todini E. 2007. Hydrological catchment modelling: Past, present and future. Hydrol Earth Syst Sci, 11: 468–482

    Article  Google Scholar 

  • Tolson B A, Shoemaker C A. 2007. Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour Res, 43: 737–744

    Article  Google Scholar 

  • Uhlenbrook S, Roser S, Tilch N. 2004. Hydrological process representation at the meso-scale: The potential of a distributed, conceptual catchment model. J Hydrol, 291: 278–296

    Article  CAS  Google Scholar 

  • Vallis G K. 2016. Geophysical fluid dynamics: Whence, whither and why? Proc R Soc A, 472: 20160140

    Article  Google Scholar 

  • VanderKwaak J E, Loague K. 2001. Hydrologic-Response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resour Res, 37: 999–1013

    Article  Google Scholar 

  • Vauclin M, Khanji D, Vachaud G. 1979. Experimental and numerical study of a transient, two-dimensional unsaturated-saturated water table recharge problem. Water Resour Res, 15: 1089–1101

    Article  Google Scholar 

  • Vertessy R A, Hatton T J, O’Shaughnessy P J, Jayasuriya M D A. 1993. Predicting water yield from a mountain ash forest catchment using a terrain analysis based catchment model. J Hydrol, 150: 665–700

    Article  Google Scholar 

  • Vrugt J A, Gupta H V, Bouten W, Sorooshian S. 2003. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res, 39: 1201

    Article  Google Scholar 

  • Wagener T, Wheater H S, Gupta H V. 2004. Rainfall-Runoff Modelling in Gauged and Ungauged Catchments. London: Imperial College Press

    Book  Google Scholar 

  • Wagener T, Sivapalan M, Troch P A, McGlynn B L, Harman C J, Gupta H V, Kumar P, Rao P S C, Basu N B, Wilson J S. 2010. The future of hydrology: An evolving science for a changing world. Water Resour Res, 46: 737–744

    Article  Google Scholar 

  • Wang L, Li X P, Zhou J, Liu W B, Yang K. 2014. Hydrological modelling over the Tibetan Plateau: Current status and perspective (in Chinese). Adv Earth Sci, 29: 674–682

    Google Scholar 

  • Wang R, Wang Z G, Xia J. 2008. Advances in the Integrated surface water and groundwater model (in Chinese). Prog Geogr, 27: 37–41

    Google Scholar 

  • Wang W K, Li J T, Wang Z, Feng X Z, Xu M, Wang W M, Yang L J. 2007. Evolution of the relationship between river and groundwater and several scientific problems. J Jilin Univ-Earth Sci Ed, 37: 231–238

    Google Scholar 

  • Wigmosta M S, Vail L W, Lettenmaier D P. 1994. A distributed hydrology-vegetation model for complex terrain. Water Resour Res, 30: 1665–1679

    Article  Google Scholar 

  • Winter T C. 1999. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J, 7: 28–45

    Article  Google Scholar 

  • Wood E F, Sivapalan M, Beven K, Band L. 1988. Effects of spatial variability and scale with implications to hydrologic modeling. J Hydrol, 102: 29–47

    Article  Google Scholar 

  • Woods J A, Teubner M D, Simmons C T, Narayan K A. 2003. Numerical error in groundwater flow and solute transport simulation. Water Resour Res, 39: 1158

    Article  Google Scholar 

  • Xu Z X. 2010. Hydrological models: Past, present and future (in Chinese). J Beijing Nor Univ-Nat Sci, 46: 278–289

    Google Scholar 

  • Yang D W, Gao B, Jiao Y, Lei H M, Zhang Y L, Yang H B, Cong Z T. 2015. A distributed scheme developed for eco-hydrological modeling in the upper Heihe River. Sci China Earth Sci, 58: 36–45

    Article  CAS  Google Scholar 

  • Yang D W, Xu Z X, Li Z, Yuan X, Wang L, Miao C Y, Tian F Q, Tian L D, Long D, Tang Q H, Liu X C, Zhang X J. 2018. Progressandprospectof hydrological sciences (in Chinese). Prog Geogr, 37: 36–45

    Google Scholar 

  • Yang D, Herath S, Musiake K. 1998. Development of a geomorphology-based hydrological model for large catchments. Proc Hydraulic Eng, 42: 169–174

    Article  Google Scholar 

  • Ye W, Bates B C, Viney N R, Sivapalan M, Jakeman A J. 1997. Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments. Water Resour Res, 33: 153–166

    Article  Google Scholar 

  • Yu X, Bhatt G, Duffy C, Shi Y. 2013. Parameterization for distributed watershed modeling using national data and evolutionary algorithm. Comput Geosci, 58: 80–90

    Article  Google Scholar 

  • Yu X, Duffy C, Baldwin D C, Lin H. 2014. The role of macropores and multi-resolution soil survey datasets for distributed surface-subsurface flow modeling. J Hydrol, 516: 97–106

    Article  Google Scholar 

  • Yu X, Duffy C J, Rousseau A N, Bhatt G, Pardo Álvarez Á, Charron D. 2016. Open science in practice: Learning integrated modeling of coupled surface-subsurface flow processes from scratch. Earth Space Sci, 3: 190–206

    Article  Google Scholar 

  • Yu X, Xu Z, Moraetis D, Nikolaidis N P, Schwartz F W, Zhang Y, Shu L, Duffy C J, Liu B. 2021. Capturing hotspots of fresh submarine groundwater discharge using a coupled surface-subsurface model. J Hydrol, 598: 126356

    Article  Google Scholar 

  • Yu Z. 2000. Assessing the response of subgrid hydrologic processes to atmospheric forcing with a hydrologic model system. Glob Planet Change, 25: 1–17

    Article  Google Scholar 

  • Yu Z, Lakhtakia M N, Yarnal B, White R A, Miller D A, Frakes B, Barron E J, Duffy C, Schwartz F W. 1999. Simulating the river-basin response to atmospheric forcing by linking a mesoscale meteorological model and hydrologic model system. J Hydrol, 218: 72–91

    Article  Google Scholar 

  • Yu Z, Pollard D, Cheng L. 2006. On continental-scale hydrologic simulations with a coupled hydrologic model. J Hydrol, 331: 110–124

    Article  Google Scholar 

  • Yu Z, Lu C, Cai J, Yu D, Mahe G, Mishra A, Cudennec C, Van Lanen H A J, Orange D, Amani A. 2020. Preface: Hydrological processes and water security in a changing world. Proc IAHS, 383: 3–4

    Article  Google Scholar 

  • Zehe E, Maurer T, Ihringer J, Plate E. 2001. Modeling water flow and mass transport in a loess catchment. Phys Chem Earth Part B-Hydrol Oceans Atmosphere, 26: 487–507

    Article  Google Scholar 

  • Zehe E, Ehret U, Pfister L, Blume T, Schröder B, Westhoff M, Jackisch C, Schymanski S J, Weiler M, Schulz K, Allroggen N, Tronicke J, van Schaik L, Dietrich P, Scherer U, Eccard J, Wulfmeyer V, Kleidon A. 2014. HESS Opinions: From response units to functional units: A thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments. Hydrol Earth Syst Sci, 18: 4635–4655

    Article  Google Scholar 

  • Zhang Y, Slingerland R, Duffy C. 2016. Fully-coupled hydrologic processes for modeling landscape evolution. Environ Model Software, 82: 89–107

    Article  Google Scholar 

  • Zhao R J, Wang P L. 1988. Analysis of Xin’anjiang model parameters (in Chinese). Hydrology, 6: 2–9

    Google Scholar 

  • Zheng C, Liu J, Cao G, Kendy E, Wang H, Jia Y. 2010. Can China cope with its water crisis?—Perspectives from the North China plain. Groundwater, 48: 350–354

    Article  Google Scholar 

  • Zheng Y, Tian Y, Du E, Han F, Wu Y, Zheng C, Li X. 2020. Addressing the water conflict between agriculture and ecosystems under environmental flow regulation: An integrated modeling study. Environ Model Software, 134: 104874

    Article  Google Scholar 

Download references

Acknowledgements

The Grammarly (https://Grammarly.com) and GPT-4 (https://chat.openai.com) assisted only in language refinement. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41930759, 42325502), the West Light Foundation of the Chinese Academy of Sciences (Grant No. xbzg-zdsys-202215), the Chinese Academy Sciences Talents Program, National Cryosphere Desert Data Center, the Qinghai Key Laboratory of Disaster Prevention (Grant No. QFZ-2021-Z02), and 2023 First Batch of Science and Technology Plan Projects of Lanzhou City (Grant No. 2023-1-49).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhong Meng.

Ethics declarations

Conflict of interestThe authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, L., Chen, H., Meng, X. et al. A review of integrated surface-subsurface numerical hydrological models. Sci. China Earth Sci. 67, 1459–1479 (2024). https://doi.org/10.1007/s11430-022-1312-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1312-7

Keywords

Navigation