Skip to main content
Log in

Electrodeposited Cu thin layers as low cost and effective underlayers for Cu2O photocathodes in photoelectrochemical water electrolysis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cu2O is one of the most studied semiconductors for photocathodes in photoelectrochemical water splitting (PEC-WS). Its low stability is counterbalanced by good activity, provided that a suitable underlayer/support is used. While Cu2O is mostly studied on Au underlayers, this paper proposes Cu(0) as a low-cost, easy to prepare and highly efficient alternative. Cu and Cu2O can be electrodeposited from the same bath, thus allowing in principle to tune the final material’s physico-chemical properties with high precision with a scalable method. Electrodes and photoelectrodes are studied by means of electrochemical methods (cyclic voltammetry, Pb underpotential deposition) and by ex-situ X-ray absorption spectroscopy (XAS). While the potential applied for the deposition of Cu has no influence on the bulk structure and on the photocurrent displayed by the semiconductor, it plays a role on the dark currents, making this strategy promising for improving the material’s stability. Au/Cu2O and Cu/Cu2O show similar performances, the latter having clear advantages in view of future use in practical applications. The influence of Cu underlayer thickness was also evaluated in terms of obtained photocurrent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rodriguez CA, Modestino MA, Psaltis D, Moser C (2014) Design and cost considerations for practical solar-hydrogen generators. Energy Environ Sci 7:3828–3835

    Article  CAS  Google Scholar 

  2. Ager JW, Shaner MR, Walczak KA et al (2015) Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ Sci 8:2811–2824

    Article  CAS  Google Scholar 

  3. Pinaud BA, Benck JD, Seitz LC et al (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6:1983–2002

    Article  CAS  Google Scholar 

  4. Jiang C, Moniz SJA, Wang A et al (2017) Photoelectrochemical devices for solar water splitting-materials and challenges. Chem Soc Rev 46:4645–4660

    Article  CAS  PubMed  Google Scholar 

  5. Jiménez Reinosa J, Leret P, Álvarez-Docio CM et al (2016) Enhancement of UV absorption behavior in ZnO-TiO2 composites. Bol la Soc Esp Ceram y Vidr 55:55–62

    Article  CAS  Google Scholar 

  6. Tang SJ, Moniz SJA, Shevlin SA et al (2015) Visible-light driven heterojunction photocatalysts for water splitting – a critical review. Energy Environ Sci 8:731–759

    Article  CAS  Google Scholar 

  7. Chen S, Wang L-W (2012) Thermodynamic oxidation and reduction potentials of Photocatalytic semiconductors in aqueous solution. Chem Mater 24:3659–3666

    Article  CAS  Google Scholar 

  8. Bagal IV, Chodankar NR, Hassan MA et al (2019) Cu2O as an emerging photocathode for solar water splitting - a status review. Int J Hydrog Energy 44:21351–21378

    Article  CAS  Google Scholar 

  9. Lloyd MA, Siah SC, Brandt RE, et al (2016) Intrinsic defect engineering of cuprous oxide to enhance electrical transport properties for photovoltaic applications. Conf rec IEEE Photovolt spec Conf :3443–3445

  10. Jiang Y, Yuan H, Chen H (2014) Enhanced visible light photocatalytic activity of Cu2O via cationic-anionic passivated codoping. Phys Chem Chem Phys 17:630–637

    Article  CAS  Google Scholar 

  11. Musa AO, Akomolafe T, Carter MJ (1998) Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Sol Energ Mat Sol Cell 51:305–316

    Article  CAS  Google Scholar 

  12. Hsu YK, Yu CH, Chen YC, Lin YG (2013) Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation. J Power Sources 242:541–547

    Article  CAS  Google Scholar 

  13. Lim Y-F, Chua CS, Lee CJJ, Chi D (2014) Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Phys Chem Chem Phys 16:25928–25934

    Article  CAS  PubMed  Google Scholar 

  14. Wei M, Huo J (2010) Preparation of Cu2O nanorods by a simple solvothermal method. Mater Chem Phys 121:291–294

    Article  CAS  Google Scholar 

  15. Wei M, Lun N, Ma X, Wen S (2007) A simple solvothermal reduction route to copper and cuprous oxide. Mater Lett 61:2147–2150

    Article  CAS  Google Scholar 

  16. Barreca D, Comini E, Gasparotto A et al (2009) Chemical vapor deposition of copper oxide films and entangled quasi-1D nanoarchitectures as innovative gas sensors. Sensors Actuators B Chem 141:270–275

    Article  CAS  Google Scholar 

  17. Wang S, Zhang X, Pan L et al (2015) Controllable sonochemical synthesis of Cu2O/Cu2(OH)3NO3 composites toward synergy of adsorption and photocatalysis. Appl Catal B Environ 164:234–240

    Article  CAS  Google Scholar 

  18. Ma D, Liu H, Yang H et al (2009) High pressure hydrothermal synthesis of cuprous oxide microstructures of novel morphologies. Mater Chem Phys 116:458–463

    Article  CAS  Google Scholar 

  19. Valodkar M, Pal A, Thakore S (2011) Synthesis and characterization of cuprous oxide dendrites: new simplified green hydrothermal route. J Alloys Compd 509:523–528

    Article  CAS  Google Scholar 

  20. Togashi T, Hitaka H, Ohara S, et al (2010) Controlled reduction of Cu2+ to Cu+ with an N,O-type chelate under hydrothermal conditions to produce Cu2O nanoparticles. Mater Lett 64:1049–1051

  21. Neskovska R, Ristova M, Velevska J, Ristov M (2007) Electrochromism of the electroless deposited cuprous oxide films. Thin Solid Films 515:4717–4721

    Article  CAS  Google Scholar 

  22. Itoh T, Maki K (2007) Growth process of CuO(111) and Cu2O(001) thin films on MgO(001) substrate under metal-mode condition by reactive dc-magnetron sputtering. Vacuum 81:1068–1076

    Article  CAS  Google Scholar 

  23. Daltin AL, Bohr F, Chopart JP (2009) Kinetics of Cu2O electrocrystallization under magnetic fields. Electrochim Acta 54:5813–5817

    Article  CAS  Google Scholar 

  24. Golden TD, Shumsky MG, Zhou Y et al (1996) Electrochemical deposition of copper(I) oxide films. Chem Mater 8:2499–2504

    Article  CAS  Google Scholar 

  25. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10(6):456–461

    Article  CAS  PubMed  Google Scholar 

  26. Paracchino A, Brauer JC, Moser J-E et al (2012) Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J Phys Chem C 116:7341–7350

    Article  CAS  Google Scholar 

  27. Lin C, Lai Y, Mersch D, Reisner E (2012) Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem Sci 3:3482–3487

    Article  CAS  Google Scholar 

  28. Elfadill NG, Hashim MR, Chahrour KM, Mohammed SA (2016) Preparation of p-type Na-doped Cu2O by electrodeposition for a p-n homojunction thin film solar cell. Semicond Sci Technol 31:065001

    Article  CAS  Google Scholar 

  29. Mahalingam T, Chitra JS, Rajendran S et al (2000) Galvanostatic deposition and characterization of cuprous oxide thin films. J Cryst Growth 216:304–310

    Article  CAS  Google Scholar 

  30. Daltin AL, Addad A, Chopart JP (2005) Potentiostatic deposition and characterization of cuprous oxide films and nanowires. J Cryst Growth 282:414–420

    Article  CAS  Google Scholar 

  31. Mahalingam T, Chitra JSP, Chu JP, Sebastian PJ (2004) Preparation and microstructural studies of electrodeposited Cu2O thin films. Mater Lett 58:1802–1807

    Article  CAS  Google Scholar 

  32. Wu G, Zhai W, Sun F et al (2012) Morphology-controlled electrodeposition of Cu2O microcrystalline particle films for application in photocatalysis under sunlight. Mater Res Bull 47:4026–4030

    Article  CAS  Google Scholar 

  33. Wang L, Tao M (2007) Fabrication and characterization of p-n Homojunctions in cuprous oxide by electrochemical deposition. Electrochem Solid-State Lett 10:H248–H250

    Article  CAS  Google Scholar 

  34. Yoon S, Kim M, Kim I-S et al (2014) Manipulation of cuprous oxide surfaces for improving their photocatalytic activity. J Mater Chem A 2:11621

    Article  CAS  Google Scholar 

  35. Wang LC, de Tacconi NR, Chenthamarakshan CR et al (2007) Electrodeposited copper oxide films: effect of bath pH on grain orientation and orientation-dependent interfacial behavior. Thin Solid Films 515:3090–3095

    Article  CAS  Google Scholar 

  36. Scanlon DO, Watson GW (2010) Undoped n-type Cu2O: fact or fiction? J Phys Chem Lett 1:2582–2585

    Article  CAS  Google Scholar 

  37. Nian JN, Hu CC, Teng H (2008) Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. Int J Hydrog Energy 33:2897–2903

    Article  CAS  Google Scholar 

  38. Elmezayyen A, Guan S, Reicha FM et al (2015) Effect of conductive substrate (working electrode) on the morphology of electrodeposited Cu2O. J Phys D Appl Phys 48:175502

    Article  CAS  Google Scholar 

  39. Wang G, van den Berg R, de Mello DC et al (2016) Silica-supported Cu2O nanoparticles with tunable size for sustainable hydrogen generation. Appl Catal B Environ 192:199–207

    Article  CAS  Google Scholar 

  40. Paracchino A, Brauer JC, Moser J-E et al (2012) Synthesis and characterization of high-Photoactivity electrodeposited Cu2O solar absorber by Photoelectrochemistry and ultrafast spectroscopy. J Phys Chem C 116:7341–7350

    Article  CAS  Google Scholar 

  41. Fernando CAN, De Silva l. AA, Takahashi K (2001) Junction effects of p-Cu2O photocathode with layers of hole transfer sites (au) and electron transfer sites (NiO) at the electrolyte interface. Semicond Sci Technol 16:433–439

    Article  CAS  Google Scholar 

  42. Zhang S, Jiang R, Guo Y et al (2016) Plasmon modes induced by anisotropic gap opening in au@Cu2O Nanorods. Small 12:4264–4276

    Article  CAS  PubMed  Google Scholar 

  43. Mahmoud MA, Qian W, El-Sayed MA (2011) Following charge separation on the nanoscale in Cu2O-au nanoframe hollow nanoparticles. Nano Lett 11:3285–3289

    Article  CAS  PubMed  Google Scholar 

  44. Lan T, Mundt C, Tran M, Padalkar S (2017) Effect of gold underlayer on copper(I) oxide photocathode performance. J Mater Res 32:1656–1664

    Article  CAS  Google Scholar 

  45. Lan T, Padalkar S (2017) Exploring the influence of au Underlayer thickness on photocathode performance. ECS Trans 80:1049–1055

    Article  CAS  Google Scholar 

  46. Parliament E, Agency EC (2014) Commission regulation (EU) no 301/2014, amending annex XVII to regulation (EC) no 1907/2006 of the European Parliament and of the council on the registration, evaluation, authorisation and restriction of chemicals (REACH) as regards chromium VI compounds

  47. Jin Z, Hu Z, Yu JC, Wang J (2016) Room temperature synthesis of a highly active cu/Cu2O photocathode for photoelectrochemical water splitting. J Mater Chem A 4:13736–13741

    Article  CAS  Google Scholar 

  48. Tang C, Ning X, Li J et al (2019) Modulating conductivity type of cuprous oxide (Cu2O) films on copper foil in aqueous solution by comproportionation. J Mater Sci Technol 35:1570–1577

    Article  Google Scholar 

  49. Jung K, Lim T, Bae H et al (2019) Cu2O photocathode with faster charge transfer by fully reacted cu seed layer to enhance performance of hydrogen evolution in solar water splitting applications. ChemCatChem 11:4377–4382

    Article  CAS  Google Scholar 

  50. Matula RA (1979) Electrical resistivity of copper , gold palladium , and silver. J Phys Chem Ref Data 8:1147–1298

  51. Achilli E, Vertova A, Visibile A, Locatelli C, Minguzzi A, Rondinini S, Ghigna P (2017) Structure and stability of a copper(II) lactate complex in alkaline solution: a case study by energy-dispersive X-ray absorption spectroscopy. Inorg Chem 56(12):6982–6989

    Article  CAS  PubMed  Google Scholar 

  52. Liu G, Wang L, Xue D (2010) Synthesis of Cu2O crystals by galvanic deposition technique. Mater Lett 64:2475–2478

    Article  CAS  Google Scholar 

  53. Tang Y, Chen Z, Jia Z et al (2005) Electrodeposition and characterization of nanocrystalline cuprous oxide thin films on TiO2 films. Mater Lett 59:434–438

    Article  CAS  Google Scholar 

  54. Septina W, Ikeda S, Khan MA et al (2011) Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochim Acta 56:4882–4888

    Article  CAS  Google Scholar 

  55. Wijesundera RP, Hidaka M, Koga K et al (2006) Growth and characterisation of potentiostatically electrodeposited Cu2O and cu thin films. Thin Solid Films 500:241–246

    Article  CAS  Google Scholar 

  56. Mathew X, Mathews NR, Sebastian PJ (2001) Temperature dependence of the optical transitions in electrodeposited Cu2O thin films. Sol Energy Mater Sol Cells 70:277–286

    Article  CAS  Google Scholar 

  57. Vilche JR, Juttner K (1987) Anion effects on the underpotential deposition of lead on cu(111). Electrochim Acta 32:1567–1572

    Article  CAS  Google Scholar 

  58. Brisard GM, Zenati E, Gasteiger HA, et al (1996) Underpotential Deposition of Lead on Copper ( l11 ): A Study Using a Single-Crystal Rotating Ring Disk Electrode and ex Situ Low-Energy Electron Diffraction and Auger Electron Spectroscopy. Langmuir 11:2221–2230

  59. Ravel B, Newville M (2005) ATHENA , ARTEMIS, HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(Pt 4):537–541

    Article  CAS  PubMed  Google Scholar 

  60. Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Radiat 8(Pt 2):322–324

    Article  CAS  PubMed  Google Scholar 

  61. Yang Y, Li Y, Pritzker M (2016) Control of Cu2O film morphology using Potentiostatic pulsed Electrodeposition. Electrochim Acta 213:225–235

    Article  CAS  Google Scholar 

  62. Zhang Z, Wang P (2012) Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J Mater Chem 22:2456–2464

    Article  CAS  Google Scholar 

  63. Bijani S, Schrebler R, Dalchiele EA et al (2011) Study of the nucleation and growth mechanisms in the electrodeposition of micro- and nanostructured Cu2O thin films. J Phys Chem C 115:21373–21382

    Article  CAS  Google Scholar 

  64. Heng B, Xiao T, Hu X et al (2011) Catalytic activity of Cu2O micro-particles with different morphologies in the thermal decomposition of ammonium perchlorate. Thermochim Acta 524:135–139

    CAS  Google Scholar 

  65. Huang L, Peng F, Yu H, Wang H (2009) Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sci 11:129–138

    Article  CAS  Google Scholar 

  66. Kakuta S, Abe T (2009) Photocatalytic activity of Cu2O nanoparticles prepared through novel synthesis method of precursor reduction in the presence of thiosulfate. Solid State Sci 11:1465–1469

    Article  CAS  Google Scholar 

  67. Long J, Dong J, Wang X et al (2009) Photochemical synthesis of submicron- and nano-scale Cu2O particles. J Colloid Interface Sci 333:791–799

    Article  CAS  PubMed  Google Scholar 

  68. Zhang X, Song J, Jiao J, Mei X (2010) Preparation and photocatalytic activity of cuprous oxides. Solid State Sci 12:1215–1219

    Article  CAS  Google Scholar 

  69. Singh DP, Singh JAI, Mishra PR, et al (2008) Synthesis , characterization and application of semiconducting oxide ( Cu2O and ZnO ) nanostructures. Bull Mater Sci 31:319–325

    Article  CAS  Google Scholar 

  70. Zhou Y, Switzer JA (1998) Electrochemical deposition and microstructure of copper (I) oxide films. Scr Mater 38:1731–1738

    Article  CAS  Google Scholar 

  71. Ma QB, Hofmann JP, Litke A, Hensen EJM (2015) Cu2O photoelectrodes for solar water splitting: tuning photoelectrochemical performance by controlled faceting. Sol Energy Mater Sol Cells 141:178–186

    Article  CAS  Google Scholar 

  72. Heltemes EC (1966) Far-infrared properties of cuprous oxide. Phys Rev 141:803–805

    Article  CAS  Google Scholar 

  73. Siegenthaler H, Juttner K (1984) Voltammetric investigation of lead adsorption on cu(111) single crystal substrates. J Electroanal Chem 163:327–343

    Article  CAS  Google Scholar 

  74. Bewick A, Jovicevic J, Thomas B (1984) Phase formation in the underpotential deposition of metals. Faraday Symp Chem Soc 12:24–35

    Article  Google Scholar 

  75. Bewick A, Jovićević J, Thomas B (1977) Phase formation in the underpotential deposition of metals. Faraday Symp Chem Soc 12:24–35

    Article  Google Scholar 

  76. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46

    Article  CAS  Google Scholar 

  77. Zheng Z, Huang B, Wang Z et al (2009) Crystal faces of Cu2O and their stabilities in photocatalytic reactions. J Phys Chem C 113:14448–14453

    Article  CAS  Google Scholar 

  78. Kwon Y, Soon A, Han H, Lee H (2015) Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting. J Mater Chem A 3:156–162

    Article  CAS  Google Scholar 

  79. Huang C-L, Weng W-L, Huang Y-S, Liao C-N (2019) Enhanced photolysis stability of Cu2O grown on cu nanowires with nanoscale twin boundaries. Nanoscale 11(29):13709–13713

    Article  CAS  PubMed  Google Scholar 

  80. Visibile A, Wang RB, Vertova A et al (2019) Influence of strain on the band gap of Cu2O. Chem Mater Chem Mater 31:4787–4792

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge beamline BM08 “LISA” at the European Synchrotron Radiation Facility for provision of beamtime (experiment 08-01-1004) and Francesco D’Acapito for the kind support during the experiment. Università degli Studi di Milano by the “Piano di Sostegno alla Ricerca” is gratefully acknowledged. The Authors are thankful to Dr. Adriano Gomes for his help in ex-situ characterizations with SEM and XRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Minguzzi.

Additional information

Dedicated to the memory of Ivo Alexandre Hümmelgen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visibile, A., Fracchia, M., Baran, T. et al. Electrodeposited Cu thin layers as low cost and effective underlayers for Cu2O photocathodes in photoelectrochemical water electrolysis. J Solid State Electrochem 24, 339–355 (2020). https://doi.org/10.1007/s10008-019-04441-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04441-z

Keywords

Navigation