Skip to main content
Log in

Z-Isomers of (4α→6″, 2α→O→1″)-phenylflavan substituted with R′=R=OH. Conformational properties, electronic structure and aqueous solvent effects

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Procyanidins are highly hydroxylated polymers known as antioxidant compounds, thereby exhibiting beneficial effects. These compounds are protective agents against oxidative stress and the damage induced by free radicals in membranes and nucleic acids. This paper describes a study of the conformational space of (4α→6″, 2α→O→1″)-phenylflavan substituted with R′=R=OH as part of a larger study of similar structures with different substitutions. The relationships between aqueous solution–vacuum variations of some properties were studied, as well as the stabilization and reactivity of (4α→6″, 2α→O→1″)-phenylflavan substituted with R′=R=H, R′=H, R=OH, R′=R=OH, and (+)-catechin. The variations in geometric parameters and electronic properties due to conformational changes, as well as the effects of substituents and polar solvents, were evaluated and analyzed. Bader’s theory of atoms in molecules was applied to characterize intramolecular interactions, along with a natural bond orbital analysis for each conformer described. The molecular electrostatic potential was rationalized by charge delocalization mechanisms and interatomic intramolecular interactions, relating them to the structural changes and topological properties of the electron charge density. Molecular polarizability and permanent electric dipole moment values were estimated. The results show the importance of a knowledge of the conformational space, and values for each conformer. Based on our previous results, we showed the existence of electron charge delocalization mechanisms acting cooperatively as “delocalization routes”, showing interactions between different rings not even sharing the same plane. These “delocalization routes” were more effective for (4α→6″, 2α→O→1″)-phenylflavan substituted with R′=R=OH than for (+)-catechin, and are proposed as adding insight into the structure–antioxidant activity relationship of flavans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  Google Scholar 

  2. Gu L, Kelm M, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Gebhardt S, Prior RL (2003) Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 134:613–617

    Google Scholar 

  3. Auger C, Al-Awwadi N, Bornet A, Rouanet J-M, Gasc F, Cros G, Teissedre PL (2004) Catechins and procyanidins in Mediterranean diets. Food Res Int 37(3):233–245

    Article  CAS  Google Scholar 

  4. Yilmaz Y, Toledo RT (2004) Major flavonoids in grape seeds and skins: antioxidant capacity of Catechin, Epicatechin, and gallic acid. J Agric Food Chem 52(2):255–260

    Article  CAS  Google Scholar 

  5. Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46(5):1887–1892

    Article  CAS  Google Scholar 

  6. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanism of action and potential applications. Am J Clin Nutr 74(418–425):2001

    Google Scholar 

  7. Landrault N, Poucheret P, Ravel P, Gasc F, Cros G, Teissedre PL (2001) Antioxidant capacities and phenolics levels of French wines from different varieties and vintages. J Agric Food Chem 49:3341–3348

    Article  CAS  Google Scholar 

  8. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13(10):572–584

    Article  CAS  Google Scholar 

  9. Lobayan RM, Jubert AH, Vitale MG, Pomilio AB (2009) Conformational and electronic (AIM/NBO) study of unsubstituted A-type dimeric proanthocyanidin. J Mol Model 15:537–550

    Article  CAS  Google Scholar 

  10. Lobayan RM, Bentz EN, Jubert AH, Pomilio AB (2010) Theoretical study of Z isomers of A-type dimeric proanthocyanidins substituted with R=H, OH and OCH3: stability and reactivity properties. J Mol Model 16:1895–1909

    Article  Google Scholar 

  11. Lobayan RM, Bentz EN, Jubert AH, Pomilio AB (2012) Structural and electronic properties of Z isomers of (4α→6″,2α→O→1″)-phenylflavans substituted with R=H, OH and OCH3 calculated in aqueous solution with PCM solvation model. J Mol Model 18:1667–76

    Article  CAS  Google Scholar 

  12. Bentz EN, Pomilio AB, Lobayan RM (2014) Structure and electronic properties of (+)-catechin: aqueous solvent effects. J Mol Model 20: 2105

  13. HyperChem Release 7.5, Hypercube Inc, Gainsville, FL

  14. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  15. Lee C, Yang W, Parr RG (1988) Development of the Colle- Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.02. Gaussian Inc, Pittsburgh

    Google Scholar 

  17. Miertuš S, Scrocco E, Tomassi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  Google Scholar 

  18. Flúkiger P, Lúthi HP, Portmann S, Weber J (2000) MOLEKEL 4.0. Swiss Center for Scientific Computing, Manno, Switzerland

  19. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  20. Biegler-Koning FW, Bader RFW, Tang TH (1982) Calculation of the average properties of atoms in molecules.II. J Comput Chem 3:317–328

    Article  Google Scholar 

  21. Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO 3.1. Program as implemented in the Gaussian 03 package

  22. Estévez L, Mosquera R (2007) A density functional theory study on pelargonidin. J Phys Chem A 111:11100–9

    Article  Google Scholar 

  23. Glossman-Mitnik D, Mendoza-Wilson AM, Lardizabal-Gutiérrez D, Torres-Moye E, Fuentes-Cobas L, Balandrán-Quintana R, Camacho-Dávila A, Quintero-Ramos A (2007) Optimized structure and thermochemical properties of flavonoids determined by the CHIH(medium) DFT model chemistry versus experimental techniques. J Mol Struct 871:114–130

    Article  Google Scholar 

  24. Zhang HY, Sun YM, Wang XL (2003) Why B-ring is the active center for genistein to scavenge peroxyl radical: A DFT study. Bioorg Med Chem Lett 13:909–911

    Article  Google Scholar 

  25. Aparicio S (2010) A systematic computational study on flavonoids. Int J Mol Sci 11:2017–38

    Article  CAS  Google Scholar 

  26. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  27. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  28. Koch U, Popelier P (1995) Characterization of C-H-O hidrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  29. Carroll MT (1988) Bader RFW (1988) An analysis of the hydrogen bond in BASE-HF complexes using the theory of atoms in molecules. Mol Phys 65:695–722

    Article  CAS  Google Scholar 

  30. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Book  Google Scholar 

  31. Bentz EN, Pomilio AB (2014) Lobayan RM (2014) Exploratory conformational study of (+)- catechin. Modeling of the polarizability and electric dipole moment. J Mol Model 20:2522

    Article  Google Scholar 

  32. Nguyen TV, Pratt DW (2006) Permanent electric dipole moments of four tryptamine conformers in the gas phase: a new diagnostic of structure and dynamics. J Chem Phys 124:1216–1219

    Google Scholar 

  33. Antonczak S (2008) Electronic description of four flavonoids revisited by DFT method. J Mol Struct THEOCHEM 856:38–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to National Council of Scientific and Technical Researches of Argentina (CONICET) and Universidad de Buenos Aires (Argentina) for financial support. A.B.P. is a Senior Research Member of CONICET. E.N.B. acknowledges a fellowship of CONICET and Universidad Nacional del Nordeste (Corrientes, Argentina). R.M.L. acknowledges Centro de Cómputos de Alto Desempeño de la Universidad Nacional del Nordeste (CADUNNE) for computational facilities, and financial support of the Secretaria General de Ciencia y Técnica de la Universidad Nacional del Nordeste (Corrientes, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana M. Lobayan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2027 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentz, E.N., Pomilio, A.B. & Lobayan, R.M. Z-Isomers of (4α→6″, 2α→O→1″)-phenylflavan substituted with R′=R=OH. Conformational properties, electronic structure and aqueous solvent effects. J Mol Model 22, 187 (2016). https://doi.org/10.1007/s00894-016-3034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3034-9

Keywords

Navigation