Skip to main content
Log in

Theoretical study of Z isomers of A-type dimeric proanthocyanidins substituted with R=H, OH and OCH3: stability and reactivity properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The stereochemistry of A-type dimeric proanthocyanidins was studied, focusing on the factors that determine it, and the changes that occur with R = OCH3, R′ = H, and R = OH, R′ = H as substituents, starting with the study of the conformational space of each species. Using molecular dynamics at a semiempirical level, and complementing with functional density calculations, two conformers of lowest energy were characterized for R = H, eight conformers for R = OH, and three conformers for R = OCH3. Electronic distributions were analyzed at a higher calculation level, thus improving the basis set. Intramolecular interactions were examined and characterized by the theory of atoms in molecules (AIM). Detailed natural bond orbitals (NBO) analysis allowed the description of subtle stereoelectronic aspects of fundamental importance for understanding the stabilization and antioxidant function of these structures. The study was enriched by a deep analysis of maps of molecular electrostatic potential (MEP). The coordinated analysis of MEP, together with the NBO and AIM results, allowed us to rationalize novel distribution aspects of the potential created in the space around a molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–d
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pomilio A, Müller O, Schilling G, Weinges K (1977) Zur Kenntnis der Proanthocyanidine, XXII. Über die Konstitution der Kondensationsprodukte von Phenolen mit Flavyliumsalzen. Justus Liebigs Ann Chem :597-601

  2. Ricardo da Silva JM, Darmon N, Fernandez Y, Mitjavilla S (1991) Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds. J Agric Food Chem 39:1549–1552

    Article  Google Scholar 

  3. Liu ZQ, Ma LP, Zhou B, Yang L, Liu ZL (2000) Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein. Chem Phys Lipids 106:53–63

    Article  CAS  Google Scholar 

  4. Liu L, Xie B, Cao S, Yang E, Xu X, Guo S (2007) A-type procyanidins from Litchi chinensis pericarp with antioxidant activity. Food Chem 105:1446–1451

    Article  CAS  Google Scholar 

  5. Kedage VV, Tilak JC, Dixit GB, Devasagayam TPA, Mhatre M (2007) A study of antioxidantproperties of some varieties of grapes (Vitis vinifera L). Crit Rev Food Sci Nutr 47:175–185

    Article  CAS  Google Scholar 

  6. Pinent M, Bladé C, Salvadó MJ, Blay M, Pujadas G, Fernandez-Larrea J, Arola L, Ardevol A (2006) Procyanidin effects on adipocyte-related pathologies. Crit Rev Food Sci Nutr 46:543–550

    Article  CAS  Google Scholar 

  7. Pomilio A, Ellmann B, Künstler K, Schilling G, Weinges K (1977) Naturstoffe aus Arzneipflanzen, XXI. 13C-NMR-spektroskopische Untersuchungen an Flavanoiden. Justus Liebigs Ann Chem :588–596

  8. Lobayan RM, Jubert AH, Pomilio AB (2009) Conformational and electronic (AIM/NBO) study of unsubstituted A-type dimeric Proanthocyanidin. J Mol Model 15:537–550

    Article  CAS  Google Scholar 

  9. HyperChem Release 7.5, Hypercube Inc, Gainsville, FL

  10. Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.7. Gaussian Inc, Pittsburgh

    Google Scholar 

  11. Flúkiger P, Lúthi HP, Portmann S, Weber J (2000) MOLEKEL 4.0. Swiss Center for Scientific Computing, Manno, Switzerland

  12. Biegler-Koning FW, Bader RFW, Tang TH (1982) Calculation of the average properties of atoms in molecules.II. J Comput Chem 3:317–328

    Article  Google Scholar 

  13. Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO 3.1. Program as implemented in the Gaussian 98 package

  14. Bader RFW (1995) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  15. Bader RFW (1990) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  Google Scholar 

  16. Bader RFW (1998) A Bond Path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  17. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  18. Carroll MT, Bader RFW (1988) An analysis of the hydrogen bond in BASE-HF complexes using the theory of atoms in molecules. Mol Phys 65:695–722

    Article  CAS  Google Scholar 

  19. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  20. Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  21. Lee JC, Peris E, Rheingod AL, Crabtree CH (1994) An unusual type of H⋯H interaction: Ir-H⋯H-O and Ir-H⋯H–N hydrogen bonding and its involvement in sigma-bond metathesis. J Am Chem Soc 116:11014–11019

    Article  CAS  Google Scholar 

  22. Pakiari AH, Mohajeri A (2003) Multi dihydrogen bonds. J Mol Struct Theochem 620:31–36

    Article  CAS  Google Scholar 

  23. Grabowski SJ, Sokalski WA, Leszczynski J (2007) Wide spectrum of H⋯H interactions; van der Waals contacts, dihydrogen bonds and covalency. Chem Phys 337:68–76

    Article  CAS  Google Scholar 

  24. Matta CF (2006) The non-electrostatic limit of closed-shell interaction between two hydrogen atoms. A critical review. In: Grabowski SJ (ed) Hydrogen bonding–new insights. Springer, Netherlands, pp 337–375

  25. Pacios LF (2006) Changes of electron properties in the formation of hydrogen bonds. In: Grabowski SJ (ed) Hydrogen bonding–new insights. Springer, Netherlands, pp 109–148

    Google Scholar 

  26. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, NY

    Google Scholar 

  27. Politzer P, Landry SJ, Warnheim T (1982) Proposed procedure for using electrostatic potentials to predict and interpret nucleophilic processes. J Phys Chem 86:4767–4771

    Article  CAS  Google Scholar 

  28. Politzer P, Abrahmsen L, Sjoberg P (1984) Effects of amino and nitro substituents upon the electrostatic potential of an aromatic ring. J Am Chem Soc 106:855–860

    Article  CAS  Google Scholar 

  29. Politzer P, Laurence PR, Jayasuriya K (1985) Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Health Perspect 61:191–202

    Article  CAS  Google Scholar 

  30. Politzer P, Murray JS (1991) Theoretical biochemistry and molecular biophysics: a comprehensive survey, vol 2. In: Beveridge DL, Lavery R (eds) Protein. Adenine , Schenectady, pp 165–191

    Google Scholar 

  31. Murray JS, Lane P, Brinck T, Politzer P, Sjoberg P (1991) Electrostatic potentials on the molecular surfaces of cyclic ureides. J Phys Chem 95:844–848

    Article  CAS  Google Scholar 

  32. Muñoz-Caro C, Niño A, Sement ML, Leal JM, Ibeas S (2000) Modeling of protonation processes in acetohydroxamic acid. J Org Chem 65:405–410

    Article  CAS  Google Scholar 

  33. Politzer P, Murray J, Concha MC (2002) The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes. Int J Quantum Chem 88:19–27

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Agencia de Promoción Científica y Tecnológica Argentina (MINCYT), CONICET, Universidad Nacional de La Plata and Universidad de Buenos Aires (Argentina) for financial support. A.B.P. is a Senior Research Member of the National Research Council of Argentina (CONICET). A.H.J. is Member of the Scientific Research Career (CIC, Provincia de Buenos Aires). E.N.B. acknowledges a fellowship (IP-PRH No 54) from Agencia de Promoción Científica y Tecnológica Argentina and Universidad de la Cuenca del Plata (Corrientes, Argentina). R.M.L. acknowledges Universidad de la Cuenca del Plata for facilities provided during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana M. Lobayan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 511 kb)

ESM Fig. S1a–d

Maps of molecular electrostatic potential (MEP) for Z1 rotamers, substituted with R = OCH3 (a), R = H (b) and R = OH (c) and for Z2 rotamers substituted with R = OH (d) of A-type dimeric proanthocyanidins, in a.u. Oblique lines indicate the decreasing reactivity towards electrophilic attack OCH3 (a) >H (b) >OH (c). Horizontal lines show higher reactivity of Z1 (c) rotamers than that of Z2 rotamers (d). (PDF 797 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentz, E.N., Jubert, A.H., Pomilio, A.B. et al. Theoretical study of Z isomers of A-type dimeric proanthocyanidins substituted with R=H, OH and OCH3: stability and reactivity properties. J Mol Model 16, 1895–1909 (2010). https://doi.org/10.1007/s00894-010-0682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0682-z

Keywords

Navigation