Skip to main content
Log in

Conformational and electronic (AIM/NBO) study of unsubstituted A-type dimeric proanthocyanidin

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The conformational space of the unsubstituted A-type dimeric proanthocyanidin was scanned using molecular dynamics at a semiempirical level, and complemented with functional density calculations. The lowest energy conformers were obtained. Electronic distributions were analysed at a higher calculation level, thus improving the basis set. A topological study based on Bader’s theory (AIM: atoms in molecules) and natural bond orbital (NBO) framework was performed. Furthermore, molecular electrostatic potential maps (MEPs) were obtained and analysed. NMR chemical shifts were calculated at ab initio level and further compared with previous experimental values; coupling constants were also calculated. The stereochemistry of the molecule is thoroughly discussed, revealing the key role that hyperconjugative interactions play in defining experimental trends. These results show the versatility of geminal spin–spin coupling 2J(C-1′,O) as a probe for stereochemical studies of proanthocyanidins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pomilio A, Müller O, Schilling G, Weinges K (1977) Zur Kenntnis der Proanthocyanidine, XXII. Über die Konstitution der Kondensationsprodukte von Phenolen mit Flavyliumsalzen. Justus Liebigs Ann Chem, 597–601. doi:10.1002/jlac.197719770409

  2. Ricardo da Silva JM, Darmon N, Fernandez Y, Mitjavilla S (1991) Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds. J Agric Food Chem 39:1549–1552. doi:10.1021/jf00009a002

    Article  Google Scholar 

  3. Liu ZQ, Ma LP, Zhou B, Yang L, Liu ZL (2000) Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein. Chem Phys Lipids 106:53–63. doi:10.1016/S0009-3084(00)00133-X

    Article  CAS  Google Scholar 

  4. Liu L, Xie B, Cao S, Yang E, Xu X, Guo S (2007) A-type procyanidins from Litchi chinensis pericarp with antioxidant activity. Food Chem 105:1446–1451. doi:10.1016/j.foodchem.2007.05.022

    Article  CAS  Google Scholar 

  5. Kedage VV, Tilak JC, Dixit GB, Devasagayam TPA, Mhatre M (2007) A study of antioxidant properties of some varieties of grapes (Vitis vinifera L.). Crit Rev Food Sci Nutr 47:175–185. doi:10.1080/10408390600634598

    Article  CAS  Google Scholar 

  6. Pinent M, Bladé C, Salvadó MJ, Blay M, Pujadas G, Fernandez-Larrea J, Arola L, Ardevol A (2006) Procyanidin effects on adipocyte-related pathologies. Crit Rev Food Sci Nutr 46:543–550. doi:10.1080/10408390500354537

    Article  CAS  Google Scholar 

  7. Pomilio A, Ellmann B, Künstler K, Schilling G, Weinges K (1977) Naturstoffe aus Arzneipflanzen, XXI. 13C-NMR-spektroskopische Untersuchungen an Flavanoiden. Justus Liebigs Ann Chem, 588–596. doi:10.1002/jlac.197719770408

  8. Ditchfield R, Miller DP, Pople JA (1970) Molecular orbital theory of carbon NMR chemical shifts. Chem Phys Lett 6:573–575. doi:10.1016/0009-2614(70)85229-0

    Article  CAS  Google Scholar 

  9. Gelius U, Roos B, Siegbahn P (1970) Ab initio MO SCF calculations of ESCA shifts in sulphur-containing molecules. Chem Phys Lett 4:471–475. doi:10.1016/0009-2614(70)85018-7

    Article  CAS  Google Scholar 

  10. Ditchfield R (1972) On molecular orbital theories of NMR chemical shifts. Chem Phys Lett 15:203–206. doi:10.1016/0009-2614(72)80149-0

    Article  CAS  Google Scholar 

  11. Kaupp M, Malkin VG, Malkina OL, Salahub DR (1996) Ab initio ECP/DFT calculation and interpretation of carbon and oxygen nmr chemical shift tensors in transition-metal carbonyl complexes. Chem Eur J 2:24–30. doi:10.1002/chem.19960020108

    Article  CAS  Google Scholar 

  12. Schindler M, Kutzelnigg W (1983) Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. 3. Application to hydrocarbons and other organic molecules. J Am Chem Soc 105:1360–1370. doi:10.1021/ja00343a049

    Article  CAS  Google Scholar 

  13. Gauss J (1993) Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts. J Chem Phys 99:3629–3643. doi:10.1063/1.466161

    Article  CAS  Google Scholar 

  14. van Wüllen CJ (1995) Chem Phys 102:2806–2811. doi:10.1063/1.468657

    Google Scholar 

  15. Bader RFW (1990) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928. doi:10.1021/cr00005a013

    Article  Google Scholar 

  16. Bader RFW (1995) Atoms in molecules. A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  17. Popelier P (2000) Atoms in molecules. An introduction. Prentice Hall

  18. HyperChem Release 7.5, Hypercube Inc., USA

  19. Gaussian 98, Revision A.7, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, RobbMA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian, Inc., Pittsburgh PA.

  20. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  21. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  22. Flúkiger P, Lúthi HP, Portmann S, Weber J (2000) MOLEKEL 4.0. Swiss Center for Scientific Computing, Manno, Switzerland

  23. Biegler-König FW, Bader RFW, Tang TH (1982) Calculation of the average properties of atoms in molecules. II. J Comput Chem 3:317–328. doi:10.1002/jcc.540030306

    Article  Google Scholar 

  24. Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO 3.1. Program as implemented in the Gaussian 98 package

  25. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403. doi:10.1063/1.458517

    Article  CAS  Google Scholar 

  26. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323. doi:10.1021/jp981794v

    Article  CAS  Google Scholar 

  27. Politzer P, Laurence PR, Jayasuriya K (1985) Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Health Perspect 61:191–202. doi:10.2307/3430072

    Article  CAS  Google Scholar 

  28. Politzer P, Murray JS (1991) In: Beveridge DL, Lavery R (eds) Theoretical biochemistry and molecular biophysics: a comprehensive survey, vol 2, protein. Adenine, Schenectady, NY, Chapter 13

    Google Scholar 

  29. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

  30. Politzer P, Landry SJ, Waernheim T (1982) Proposed procedure for using electrostatic potentials to predict and interpret nucleophilic processes. J Phys Chem 86:4767–4771

    Article  CAS  Google Scholar 

  31. Politzer P, Abrahmsen L, Sjoberg P (1984) Effects of amino and nitro substituents upon the electrostatic potential of an aromatic ring. J Am Chem Soc 106:855–860

    Article  CAS  Google Scholar 

  32. Politzer P, Laurence PR, Abrahmsen L, Zilles BA, Sjoberg P (1984) Chem Phys Lett 111:75–78

    Article  CAS  Google Scholar 

  33. Murray JS, Lane P, Brinck T, Politzer P, Sjoberg P (1991) Electrostatic potentials on the molecular surfaces of cyclic ureides. J Phys Chem 95:844–848

    Article  CAS  Google Scholar 

  34. Bader RFW (1990) Chem Rev 91:893–928. doi:10.1021/cr00005a013

    Article  Google Scholar 

  35. Muñoz-Caro C, Niño A, Sement ML, Leal JM, Ibeas S (2000) Modeling of protonation processes in acetohydroxamic acid. J Org Chem 65:405–410

    Article  Google Scholar 

  36. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J Am Chem Soc 125:5973–5987

    Article  CAS  Google Scholar 

  37. Tormena CF, Rittner R, Contreras RH, Peralta JE (2003) Theoretical calculation of proto-proton NMR indirect spin-spin coupling constants in heterocyclic three-membered rings. Ann Magn Reson 2:70–72

    Google Scholar 

  38. Contreras RH, Peralta JE (2000) Angular dependence of spin-spin coupling constants. Prog Nucl Magn Reson Spectrosc 37:321–425. doi:10.1016/S0079-6565(00)00027-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to CONICET, Universidad Nacional de La Plata and Universidad de Buenos Aires (Argentina) for financial support. One of us (A.B.P.) is a Senior Research Member of the National Research Council of Argentina (CONICET). A.H.J. is a Member of the Scientific Research Career (CIC, Provincia de Buenos Aires). R.M.L. acknowledges Universidad de la Cuenca del Plata (Corrientes, Argentina) for facilities provided during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana M. Lobayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobayan, R.M., Jubert, A.H., Vitale, M.G. et al. Conformational and electronic (AIM/NBO) study of unsubstituted A-type dimeric proanthocyanidin. J Mol Model 15, 537–550 (2009). https://doi.org/10.1007/s00894-008-0389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0389-6

Keywords

Navigation