Skip to main content
Log in

A comparative study of the aromaticity of pyrrole, furan, thiophene, and their aza-derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The relative aromaticity of pyrrole, furan, thiophene, and their aza-derivatives has been examined using TRE (topological resonance energy), MRE (magnetic resonance energy), ring current (RC), and ring current diamagnetic susceptibility (χG) methods. The results obtained were compared with results obtained by others who used the energetic method ASE (aromatic stabilization energy), the geometric method HOMA (harmonic oscillator model of aromaticity), and the magnetic method NICS(1) (nucleus-independent chemical shift). The impact of nitrogen atoms on the aromaticity of the aza-derivatives of pyrrole, furan, and thiophene is discussed. An excellent correlation was found between the energetic (TRE, MRE) and magnetic (RC and χG) criteria of aromaticity for all compounds. It was expected that inclusion of a heteroatom would decrease the aromaticity relative to the cyclopentadienyl anion. Our results show that the type of the first heteroatom, which donates two electrons to the system, as well as the number of nitrogen atoms and their positions in the molecule have a strong effect on aromaticity. In general, aromaticity is enhanced when the nitrogen atom is adjacent to the first heteroatom. The magnitude of aromaticity is related closely with the uniformity of distribution of π-electrons in the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Minkin VI, Glukhovtsev MN, Simkin BY (1994) Aromaticity and antiaromaticity. Wiley, New York

    Google Scholar 

  2. Aihara J (1976) J Am Chem Soc 98:2750–2758

    Article  CAS  Google Scholar 

  3. Gutman I, Milun M, Trinajstic N (1977) J Am Chem Soc 99:1692–1704

    Article  CAS  Google Scholar 

  4. Kruszewski J, Krygowski TM (1972) Tetrahedron Lett 13:3839–3842

    Article  Google Scholar 

  5. Krygowski TM (1993) J Chem Inf Comput Sci 33:70–78

    Article  CAS  Google Scholar 

  6. Chen ZF, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842–3888

    Article  CAS  Google Scholar 

  7. Gomes JANF, Mallion RB (2001) Chem Rev 101:1349–1383

    Article  CAS  Google Scholar 

  8. Islas R, Heine T, Merino G (2012) Acc Chem Res 45:215–228

    Article  CAS  Google Scholar 

  9. Lazzeretti P (2000) Prog Nucl Magn Reson Spectrosc 36:1–88

    Article  CAS  Google Scholar 

  10. Poater J, Duran M, Sola M, Silvi B (2005) Chem Rev 105:3911–3947

    Article  CAS  Google Scholar 

  11. Merino G, Vela A, Heine T (2005) Chem Rev 105:3812–3841

    Article  CAS  Google Scholar 

  12. Arkin R, Kerim A (2012) Chem Phys Lett 546:144–149

    Article  CAS  Google Scholar 

  13. Aihara J (2003) Bull Chem Soc Jpn 76:103–105

    Article  CAS  Google Scholar 

  14. Poater J, Garcia-Cruz I, Illas F, Sola M (2004) Phys Chem Chem Phys 6:314–318

    Article  CAS  Google Scholar 

  15. Stanger A (2009) Chem Commun 15:1939–1947

    Article  Google Scholar 

  16. Omelchenko IV, Shishkin OV, Gorb L, Leszczynski J, Fiase S, Bultinck P (2011) Phys Chem Chem Phys 13:20536–20548

    Article  CAS  Google Scholar 

  17. Islas R, Martinez-Guajardo G, Jimenez-Halla JOC, Sola M, Merino G (2010) J Chem Theory Comput 6:1131–1135

    Article  CAS  Google Scholar 

  18. Feixas F, Matito E, Poater J, Sola M (2008) J Comput Chem 29:1543–1554

    Article  CAS  Google Scholar 

  19. Schleyer PvR, Maerker C, Dransfeld A, Jiao HJ, van Eikema Hommes NJR (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  20. Lu X, Chen ZF (2005) Chem Rev 105:3643–3696

    Article  CAS  Google Scholar 

  21. Castro AC, Osorio E, Jimenez-Halla JOC, Matito E, Tiznado W, Gabriel Merino G (2010) J Chem Theory Comput 6:2701–2705

    Article  CAS  Google Scholar 

  22. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Org Lett 8:863–866

    Article  CAS  Google Scholar 

  23. Corminboeuf C, Heine T, Seifert G, Schleyer PvR, Weber J (2004) Phys Chem Chem Phys 6:273–276

    Article  CAS  Google Scholar 

  24. Ramsden AC (2010) Tetrahedron 66:2695–2699

    Article  CAS  Google Scholar 

  25. Krygowski TM, Oziminski WP, Ramsden AC (2011) J Mol Model 17:1427–1433

    Article  CAS  Google Scholar 

  26. Hehre WJ, McIver RT, Pople JA, Schleyer PvR (1974) J Am Chem Soc 96:7162–7163

    Article  CAS  Google Scholar 

  27. Radom L (1974) J Chem Soc Chem Commun 1974:403–404

  28. George P, Trachtman M, Brett AM, Bock CW (1977) J Chem Soc Perkin Trans 2:1036–1047

    Google Scholar 

  29. Aihara J, Kanno H, Ishida T (2007) J Phys Chem A 111:8873–8876

    Article  CAS  Google Scholar 

  30. Aihara J (2006) J Am Chem Soc 128:2873–2879

    Article  CAS  Google Scholar 

  31. Aihara J (1981) Bull Chem Soc Jpn 54:1245–1246

    Article  CAS  Google Scholar 

  32. Aihara J, Horikawa T (1983) Bull Chem Soc Jpn 56:1853

    Article  CAS  Google Scholar 

  33. Aihara J (1985) J Am Chem Soc 107:298–302

    Article  CAS  Google Scholar 

  34. Aihara J (1979) J Am Chem Soc 101:5913–5917

    Article  CAS  Google Scholar 

  35. Aihara J, Horikawa T (1983) Chem Phys Lett 95:561–563

    Article  CAS  Google Scholar 

  36. Aihara J, Ishida T (2010) J Phys Chem A 114:1093–1097

    Article  CAS  Google Scholar 

  37. Van-Catledge FA (1980) J Org Chem 45:4801–4802

    Article  CAS  Google Scholar 

  38. Alonso M, Herradon B (2007) Chem Eur J 13:3913–3923

    Article  CAS  Google Scholar 

  39. Cioslowski J, Matito E, Sola M (2007) J Phys Chem A 111:6521–6525

    Article  CAS  Google Scholar 

  40. Giambiagi M, de Giambiagi MS, dos Santos CD, de Figueiredo AP (2000) Phys Chem Chem Phys 2:3381–3392

    Article  CAS  Google Scholar 

  41. Cyranski MK, PvR S, Krygowski TM, Jiao HJ (2003) Tetrahedron 59:1657–1665

    Article  CAS  Google Scholar 

  42. Cordell FR, Boggs JE (1981) J Mol Struct (THEOCHEM) 85:163–178

    Article  Google Scholar 

  43. Islas R, Chamorro E, Robles J, Heine T, Santos JC, Merino G (2007) Struct Chem 18:833–839

    Article  CAS  Google Scholar 

  44. Martinez-Guajardo G, Gomez-Sandoval Z, Jana DF, Calaminici P, Corminboeuf C, Merino G (2011) Phys Chem Chem Phys 13:20615–20619

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Natural Science Foundation of China (No. 21262037), and by the Urumqi Science and Technology Project (No. H101133001) of the Xinjiang Uyghur Autonomous Region, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ablikim Kerim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najmidin, K., Kerim, A., Abdirishit, P. et al. A comparative study of the aromaticity of pyrrole, furan, thiophene, and their aza-derivatives. J Mol Model 19, 3529–3535 (2013). https://doi.org/10.1007/s00894-013-1877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1877-x

Keywords

Navigation