A comparative study of the aromaticity of pyrrole, furan, thiophene, and their aza-derivatives
- 1.3k Downloads
- 7 Citations
Abstract
The relative aromaticity of pyrrole, furan, thiophene, and their aza-derivatives has been examined using TRE (topological resonance energy), MRE (magnetic resonance energy), ring current (RC), and ring current diamagnetic susceptibility (χG) methods. The results obtained were compared with results obtained by others who used the energetic method ASE (aromatic stabilization energy), the geometric method HOMA (harmonic oscillator model of aromaticity), and the magnetic method NICS(1) (nucleus-independent chemical shift). The impact of nitrogen atoms on the aromaticity of the aza-derivatives of pyrrole, furan, and thiophene is discussed. An excellent correlation was found between the energetic (TRE, MRE) and magnetic (RC and χG) criteria of aromaticity for all compounds. It was expected that inclusion of a heteroatom would decrease the aromaticity relative to the cyclopentadienyl anion. Our results show that the type of the first heteroatom, which donates two electrons to the system, as well as the number of nitrogen atoms and their positions in the molecule have a strong effect on aromaticity. In general, aromaticity is enhanced when the nitrogen atom is adjacent to the first heteroatom. The magnitude of aromaticity is related closely with the uniformity of distribution of π-electrons in the molecule.
Keywords
Aromaticity Azoles Diatropicity Resonance energy NICS(1)Notes
Acknowledgments
This work was supported financially by the Natural Science Foundation of China (No. 21262037), and by the Urumqi Science and Technology Project (No. H101133001) of the Xinjiang Uyghur Autonomous Region, China.
References
- 1.Minkin VI, Glukhovtsev MN, Simkin BY (1994) Aromaticity and antiaromaticity. Wiley, New YorkGoogle Scholar
- 2.Aihara J (1976) J Am Chem Soc 98:2750–2758CrossRefGoogle Scholar
- 3.Gutman I, Milun M, Trinajstic N (1977) J Am Chem Soc 99:1692–1704CrossRefGoogle Scholar
- 4.Kruszewski J, Krygowski TM (1972) Tetrahedron Lett 13:3839–3842CrossRefGoogle Scholar
- 5.Krygowski TM (1993) J Chem Inf Comput Sci 33:70–78CrossRefGoogle Scholar
- 6.Chen ZF, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842–3888CrossRefGoogle Scholar
- 7.Gomes JANF, Mallion RB (2001) Chem Rev 101:1349–1383CrossRefGoogle Scholar
- 8.Islas R, Heine T, Merino G (2012) Acc Chem Res 45:215–228CrossRefGoogle Scholar
- 9.Lazzeretti P (2000) Prog Nucl Magn Reson Spectrosc 36:1–88CrossRefGoogle Scholar
- 10.Poater J, Duran M, Sola M, Silvi B (2005) Chem Rev 105:3911–3947CrossRefGoogle Scholar
- 11.Merino G, Vela A, Heine T (2005) Chem Rev 105:3812–3841CrossRefGoogle Scholar
- 12.Arkin R, Kerim A (2012) Chem Phys Lett 546:144–149CrossRefGoogle Scholar
- 13.Aihara J (2003) Bull Chem Soc Jpn 76:103–105CrossRefGoogle Scholar
- 14.Poater J, Garcia-Cruz I, Illas F, Sola M (2004) Phys Chem Chem Phys 6:314–318CrossRefGoogle Scholar
- 15.Stanger A (2009) Chem Commun 15:1939–1947CrossRefGoogle Scholar
- 16.Omelchenko IV, Shishkin OV, Gorb L, Leszczynski J, Fiase S, Bultinck P (2011) Phys Chem Chem Phys 13:20536–20548CrossRefGoogle Scholar
- 17.Islas R, Martinez-Guajardo G, Jimenez-Halla JOC, Sola M, Merino G (2010) J Chem Theory Comput 6:1131–1135CrossRefGoogle Scholar
- 18.Feixas F, Matito E, Poater J, Sola M (2008) J Comput Chem 29:1543–1554CrossRefGoogle Scholar
- 19.Schleyer PvR, Maerker C, Dransfeld A, Jiao HJ, van Eikema Hommes NJR (1996) J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
- 20.Lu X, Chen ZF (2005) Chem Rev 105:3643–3696CrossRefGoogle Scholar
- 21.Castro AC, Osorio E, Jimenez-Halla JOC, Matito E, Tiznado W, Gabriel Merino G (2010) J Chem Theory Comput 6:2701–2705CrossRefGoogle Scholar
- 22.Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Org Lett 8:863–866CrossRefGoogle Scholar
- 23.Corminboeuf C, Heine T, Seifert G, Schleyer PvR, Weber J (2004) Phys Chem Chem Phys 6:273–276CrossRefGoogle Scholar
- 24.Ramsden AC (2010) Tetrahedron 66:2695–2699CrossRefGoogle Scholar
- 25.Krygowski TM, Oziminski WP, Ramsden AC (2011) J Mol Model 17:1427–1433CrossRefGoogle Scholar
- 26.Hehre WJ, McIver RT, Pople JA, Schleyer PvR (1974) J Am Chem Soc 96:7162–7163CrossRefGoogle Scholar
- 27.Radom L (1974) J Chem Soc Chem Commun 1974:403–404Google Scholar
- 28.George P, Trachtman M, Brett AM, Bock CW (1977) J Chem Soc Perkin Trans 2:1036–1047Google Scholar
- 29.Aihara J, Kanno H, Ishida T (2007) J Phys Chem A 111:8873–8876CrossRefGoogle Scholar
- 30.Aihara J (2006) J Am Chem Soc 128:2873–2879CrossRefGoogle Scholar
- 31.Aihara J (1981) Bull Chem Soc Jpn 54:1245–1246CrossRefGoogle Scholar
- 32.Aihara J, Horikawa T (1983) Bull Chem Soc Jpn 56:1853CrossRefGoogle Scholar
- 33.Aihara J (1985) J Am Chem Soc 107:298–302CrossRefGoogle Scholar
- 34.Aihara J (1979) J Am Chem Soc 101:5913–5917CrossRefGoogle Scholar
- 35.Aihara J, Horikawa T (1983) Chem Phys Lett 95:561–563CrossRefGoogle Scholar
- 36.Aihara J, Ishida T (2010) J Phys Chem A 114:1093–1097CrossRefGoogle Scholar
- 37.Van-Catledge FA (1980) J Org Chem 45:4801–4802CrossRefGoogle Scholar
- 38.Alonso M, Herradon B (2007) Chem Eur J 13:3913–3923CrossRefGoogle Scholar
- 39.Cioslowski J, Matito E, Sola M (2007) J Phys Chem A 111:6521–6525CrossRefGoogle Scholar
- 40.Giambiagi M, de Giambiagi MS, dos Santos CD, de Figueiredo AP (2000) Phys Chem Chem Phys 2:3381–3392CrossRefGoogle Scholar
- 41.Cyranski MK, PvR S, Krygowski TM, Jiao HJ (2003) Tetrahedron 59:1657–1665CrossRefGoogle Scholar
- 42.Cordell FR, Boggs JE (1981) J Mol Struct (THEOCHEM) 85:163–178CrossRefGoogle Scholar
- 43.Islas R, Chamorro E, Robles J, Heine T, Santos JC, Merino G (2007) Struct Chem 18:833–839CrossRefGoogle Scholar
- 44.Martinez-Guajardo G, Gomez-Sandoval Z, Jana DF, Calaminici P, Corminboeuf C, Merino G (2011) Phys Chem Chem Phys 13:20615–20619CrossRefGoogle Scholar