Advertisement

Extremophiles

, Volume 23, Issue 1, pp 9–17 | Cite as

Occurrence of the black yeast Hortaea werneckii in the Mediterranean Sea

  • Filomena De LeoEmail author
  • Angelina Lo Giudice
  • Chiara Alaimo
  • Giusy De Carlo
  • Alessandro Ciro Rappazzo
  • Marco Graziano
  • Emilio De Domenico
  • Clara Urzì
Original Paper
  • 73 Downloads

Abstract

The occurrence of cultivable fungi was investigated along the water column (25–2500 m depth) of four off-shore stations in the Mediterranean basin. An unexpected high abundance of fungi, accompanied by a scarce biodiversity, was observed up to 2500 m depth. The black yeast Hortaea werneckii, known to be one of the most salt tolerant eukaryotic organisms, was isolated for the first time from the Mediterranean Sea, and it was the dominant fungus present in seawater in almost all stations and depths, suggesting its ubiquitous distribution. Isolation of cultivable strains allowed their phylogenetic and taxonomic characterization, and demonstrated that almost all the retrieved fungal species should be considered of terrestrial origin, but well adapted to survive and reproduce at temperature and salinity conditions of the Mediterranean seawater.

Keywords

Mediterranean Sea Deep-sea water Fungi Hortaea werneckii Black yeasts 

Notes

Acknowledgements

The Cruise and IAMC-CNR-related research were supported by research funds from the Italian Ministry of University and Research (MIUR) under RITMARE Flagship Project (2012–2016). The authors are grateful to M. M. Yakimov, V. La Cono, and M. Borghini for the seawater samples. We thank Mrs. Sherron Collins for her revision of English text.

References

  1. Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381CrossRefGoogle Scholar
  2. Bianchi CN, Morri C, Chiantore M, Montefalcone M, Parravicini V, Rovere A (2012) Mediterranean Sea Biodiversity Between the Legacy From the Past and a Future of Change. In: Stambler N (ed) Life in the Mediterranean Sea: A Look at Habitat Changes. Nova Science Publishers, New York, pp 1–55Google Scholar
  3. Bonifaz A, Badali H, de Hoog GS, Cruz M, Araiza J, Cruz MA, Fierro L, Ponce RM (2008) Tinea nigra by Hortaea werneckii, a report of 22 cases from Mexico. Stud Mycol 61:77–82CrossRefGoogle Scholar
  4. Bonugli-Santos RC, Vasconcelos MRDS, Passarini MRZ, Vieira GAL, Lopes VCP, Mainardi PH, Santos JAD, Duarte LDA, Otero IVR, Yoshida AMDS, Feitosa VA, Pessoa A, Sette L (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:269.  https://doi.org/10.3389/fmicb.2015.00269 CrossRefGoogle Scholar
  5. Bortoluzzi G, Polonia A, Marozzi G, Yakimov MM, Borghini M, Genovese L, Riminucci F, La Cono V, Foraci F (2011) Marine research at CNR. In: CNR-Dipartimento Terra e Ambiente, Roma (ed) The exploration of deep hypersaline anoxic basins of the Eastern Mediterranean Sea, vol 6, pp 95–108Google Scholar
  6. Coll M, Piroddi C, Steenbeek J, Kaschner K et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5(8):e11842.  https://doi.org/10.1371/journal.pone.0011842 CrossRefGoogle Scholar
  7. Cuomo V, Jones EBG, Grasso S (1988) Occurrence and distribution of marine fungi along the coast of Mediterranena sea. Prog Oceanogr 21:189–200CrossRefGoogle Scholar
  8. de Hoog GS (2000) Atlas of Clinical Fungi, 2nd edn. American Society for Microbiology, New YorkGoogle Scholar
  9. Domsh KH, Gams W, Anderson TH (1980) Compendium of soil fungi 1. Academic Press, LondonGoogle Scholar
  10. Ellis MB (1971) Dematiaceous hyphomycetes. C.A.B. International Mycological Institute, Kew, SurreyGoogle Scholar
  11. Ellis MB (1976) More Dematiaceous hyphomycetes. C.A.B. International Mycological Institute, Kew, SurreyGoogle Scholar
  12. Fassatiovà O (1986) Moulds and filamentous fungi in technical microbiology. In: Bushel ME (ed) Progress in industrial microbiology 22. Elsevier, AmsterdamGoogle Scholar
  13. Garzoli L, Tosi S, Picco AM (2012) Marine fungi: a preliminary screening to detect new promising strains for biotechnological applications. Environ Eng Manag J 11(3):S147Google Scholar
  14. Gunde-Cimerman N, Plemenitaš A (2006) Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii. Rev Environ Sci Biotechnol 5:323–331CrossRefGoogle Scholar
  15. Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotech (FTB) 52:170–179Google Scholar
  16. Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns—Natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240Google Scholar
  17. Gunde-Cimerman N, Plemenitaš A, Oren A (2018) Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 42(3):353–375CrossRefGoogle Scholar
  18. Hofrichter RC (2002) El Mar Mediterraneo. Fauna, Flora, Ecologıa. II/1. Guıda Sistematica y de Identificacion. Ediciones Omega, BarcelonaGoogle Scholar
  19. Jones EBG (2011) Are there more marine fungi to be described? Bot Mar 54:391–402CrossRefGoogle Scholar
  20. Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72CrossRefGoogle Scholar
  21. Kohlmeyer J, Volkmann-Kohlmeyer B (2003) Marine Ascomycetes from algae and animal hosts. Bot Mar 46:285–306CrossRefGoogle Scholar
  22. Kress N, Manca BB, Klein B, Deponte D (2003) Continuing influence of the changed thermohaline circulation in the eastern Mediterranean on the distribution of dissolved oxygen and nutrients: physical and chemical characterization of the water masses. J Geophys Res 108(C9):8109.  https://doi.org/10.1029/2002JC001397 CrossRefGoogle Scholar
  23. Kress N, Gertman I, Herut B (2014) Temporal evolution of physical and chemical characteristics of the water column in the Easternmost Levantine basin (Eastern Mediterranean Sea) from 2002 to 2010. J Marine Syst 135:6–13CrossRefGoogle Scholar
  24. Kurtzman C, Fell JW, Boekhout T (2011) The Yeasts: A Taxonomic study, vol 1, 5th edn. Elsevier, AmsterdamGoogle Scholar
  25. Kutty SN, Philip R (2008) Marine yeasts—a review. Yeast 25:465–483CrossRefGoogle Scholar
  26. Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microb 75:6415–6421CrossRefGoogle Scholar
  27. Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164:233–241CrossRefGoogle Scholar
  28. Marchetta A, Gerrits van den Ende B, Al-Hatmi AMS, Hagen F, Zalar P, Sudhadham M, Gunde-Cimerman N, Urzì C, de Hoog S, De Leo F (2018) Global molecular diversity of the halotolerant fungus Hortaea werneckii. Life 8(3):31.  https://doi.org/10.3390/life8030031 CrossRefGoogle Scholar
  29. Möller EM, Bahnweg G, Sandermann H, Geiger H (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20:6115–6116CrossRefGoogle Scholar
  30. Nagahama T, Hamamoto M, Nakase T, Takami H, Horikoshi K (2001) Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. A Van Leeuw J Microb 80:101–110CrossRefGoogle Scholar
  31. Nagano Y, Nagahama T (2012) Fungal diversity in deep-sea extreme environments. Fungal Ecol 5:463–471CrossRefGoogle Scholar
  32. Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35Google Scholar
  33. Rédou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microb 81:3571–3583CrossRefGoogle Scholar
  34. Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine Fungi: their Ecology and Molecular Diversity. Annu Rev Mar Sci 4:495–522CrossRefGoogle Scholar
  35. Richards TA, Leonard G, Mahé F, del Campo J, Romac S, Jones MDM, Maguire F, Dunthorn M, De Vargas C, Massana M, Chambouvet A (2015) Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc R Soc B 282:20152243.  https://doi.org/10.1098/rspb.2015.2243 CrossRefGoogle Scholar
  36. Sciacca V, Caruso F, Beranzoli L, Chierici F, De Domenico E, Embriaco D, Favali P, Giovanetti G, Larosa G, Marinaro G, Papale E, Pavan G, Pellegrino C, Pulvirenti S, Simeone F, Viola S, Riccobene G (2015) Annual acoustic presence of fin whale (Balaenoptera physalus) offshore Eastern Sicily, central Mediterranean Sea. PLoS ONE.  https://doi.org/10.1371/journal.pone.0141838 Google Scholar
  37. Singh P, Raghukumar C, Meena RM, Verma P, Shouche Y (2012) Fungal diversity in deep-sea sediments revealed by culture-dependent and culture-independent approaches. Fungal Ecol 5:543–553CrossRefGoogle Scholar
  38. Smedile F, Scarfi S, De Domenico E, Garel MH, Gentile G, La Cono V, Tamburini C, Giuliano L, Yakimov MM (2015) Variations in microbial community structure through the stratified water column in the Tyrrhenian Sea (Central Mediterranean). J Mar Sci Eng 3:845–865.  https://doi.org/10.3390/jmse3030845 CrossRefGoogle Scholar
  39. Stielow JB, Lavèsque CA, Seifert KA, Meyer W et al (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35:242–263CrossRefGoogle Scholar
  40. Stock A, Breiner HW, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T (2012) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34CrossRefGoogle Scholar
  41. Todaro F, Berdan A, Cavaliere A, Criseo G, Pernice L (1983) Gasophthalmus in black sea bream (Spondyliosoma cantharus) caused by Sarcinomyces crustaceus Lindner. Mycopathologia 81:95–97CrossRefGoogle Scholar
  42. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White T (eds) PCR protocols—A guide to methods and application. Innis Academic Press Inc, New YorkGoogle Scholar
  43. Yakimov MM, La Cono V, Slepak VZ, La Spada G, Arcadi E, Messina E, Borghini M, Monticelli LS, Rojo D, Barbas C, Golyshina OV, Ferrer M, Golyshin PN, Giuliano L (2013) Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Sci Rep UK 3:3554.  https://doi.org/10.1038/srep03554 CrossRefGoogle Scholar
  44. Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48:323–326CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
  2. 2.Institute for Coastal Marine EnvironmentNational Research Council CNRMessinaItaly

Personalised recommendations