Skip to main content
Log in

Fungi of the Arctic Seas

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The abundance and diversity of filamentous fungi in the bottom sediments of the Arctic Ocean seas (the Greenland, Barents, and Kara seas) were studied. Samples of the surface bottom sediments were collected during the 84th (July–August 2021) and 86th (October–November 2021) cruises of RV Akademik Mstislav Keldysh. The taxonomic affiliation of the isolated fungi was determined using polyphasic taxonomy. The isolated fungi belonged to 16 genera of different classes of ascomycetous, basidiomycetous, and zygomycetous fungi. The effect of cultivation temperature and different NaCl concentrations on fungal growth was determined, as well as the effect of cultivation conditions on the fatty acid profile for the strains capable of growth on media with increased osmotic potential. While fatty acid composition was shown to be affected by changes in environmental conditions, the response to osmotic stress differed among the studied cultures from deep-sea sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Begmatov, S., Savvichev, A.S., Kadnikov, V.V., Beletsky, A.V., Rusanov, I.I., Klyuvitkin, A.A., Novichkova, E.A., Mardanov, A.V., and Pimenov, N.V., Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the Barents Sea, Microorganisms, 2021, vol. 9, p. 2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bubnova, E.N. and Nikitin, D.A., Fungi in bottom sediments of the Barents and Kara Seas, Rus. J. Mar. Biol., 2017, vol. 43, no. 5, pp. 400–406.

    Article  Google Scholar 

  3. Bubnova, E.N. and Konovalova, O.P., Fungi in bottom sediments of the Chukchi Sea, Rus. J. Mar. Biol., 2019, vol. 45, no. 2, pp. 86–95. https://doi.org/10.1134/S1063074019020020

    Article  Google Scholar 

  4. Bubnova, E.N., Bondarenko, S.A., and Georgieva, M.L., First data on fungi of the Arctic seas of Siberia, VIII Int. Conf. Mar. Res. Educ. (MARESEDU-2019), Tver: Polipress, 2020, vol. 1, pp. 383–384.

  5. Burgaud, G., Hué, N.T.M., Arzur, D., Coton, M., Perrier-Cornet, J.M., Jebbar, M., and Barbier, G., Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents, Res. Microbiol., 2015, vol. 166, no. 9, pp. 700–709. https://doi.org/10.1016/j.resmic.2015.07.005

    Article  PubMed  Google Scholar 

  6. Carré, L., Zaccai, G., Delfosse, X., Girard, E., and Franzetti, B., Relevance of earth-bound extremophiles in the search for extraterrestrial life, Astrobiology, 2022, vol. 22, no. 3, pp. 322–367. https://hal.science/hal-03819312

  7. Cox, F., Newsham, K.K., Bol, R., Dungait, J.A.J., and Robinson, C., Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic, Ecol. Lett., 2016, vol. 19, no. 5, pp. 528–536. https://doi.org/10.1111/ele.12587

    Article  PubMed  Google Scholar 

  8. de Hoog, G.S., Zalar, P., van den Ende, B.G., and Gunde-Cimerman, N., Relation of halotolerance to human-pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress, in Adaptation to Life at High Salt Concentrations in Archaea, Gunde-Cimerman, N., Oren, A., and Plemenitas, A., Eds., Dordrecht: Springer, 2005, pp. 371–397.

    Google Scholar 

  9. Ding, Z., Li, L., Che, Q., Li, D., Gu, Q., and Zhu, T., Richness and bioactivity of culturable soil fungi from the Fildes Peninsula, Antarctica, Extremophiles, 2016, vol. 20, no. 4, pp. 425–435. https://doi.org/10.1007/s00792-016-0833-y

    Article  CAS  PubMed  Google Scholar 

  10. Hagestad, O.C., Andersen, J.H., Altermark, B., Hansen, E., and Rämä, T., Cultivable marine fungi from the Arctic Archipelago of Svalbard and their antibacterial activity, Mycology, 2020, vol. 11, no. 3, pp. 230–242. https://doi.org/10.1080/21501203.2019.1708492

    Article  CAS  Google Scholar 

  11. Hayashi, Y., Eguchi, H., Toibana, T., Mitamura, Y., and Yaguchi, T., Polymicrobial sclerokeratitis caused by Scedosporium apiospermum and Aspergillus cibarius, Cornea, 2014, vol. 33, no. 8, pp. 875–877.

    Article  PubMed  Google Scholar 

  12. Ivanushkina, N.E., Kochkina, G.A., and Ozerskaya, S.M., Fungi in ancient permafrost sediments of the Arctic and Antarctic regions, in Life in Ancient Ice, Castello, J., and Rogers, S., Eds., Princeton: Princeton Univ. Press, 2005, ch. 9, pp. 127–139.

    Google Scholar 

  13. Jin, L., Quan, C., Hou, X., and Fan, S., Potential pharmacological resources: natural bioactive compounds from marine-derived fungi, Mar. Drugs, 2016, vol. 14, no. 4, p. 76. https://doi.org/10.3390/md14040076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khusnullina, A.I., Bilanenko, E.N., and Kurakov, A.V., Microscopic fungi of White Sea sediments, Contemp. Probl. Ecol., 2018, vol. 11, pp. 503–513.

    Article  Google Scholar 

  15. Kochkina, G.A., Ivanushkina, N.E., Akimov, V.N., Gilchinsky, D.A., and Ozerskaya, S.M., Halopsychrotolerant fungi of the genus Geomyces from cryopegs and marine sediments of the Arctic, Microbiology (Moscow), 2007, vol. 76, no. 1, pp. 39–47.

    Article  CAS  PubMed  Google Scholar 

  16. Kochkina, G.A., Ivanushkina, N.E., Lupachev, A.V., Starodumova, I.P., Vasilenko, O.V., and Ozerskaya, S.M., Diversity of mycelial fungi in natural and human-affected Antarctic soils, Polar Biol., 2019, vol. 42, pp. 47–64. https://doi.org/10.1007/s00300-018-2398-y

    Article  Google Scholar 

  17. Kochkina, G.A., Ozerskaya, S.M., Ivanushkina, N.E., Chigineva, N.I., Vasilenko, O.V., Spirina, E.V., and Gilichinskii, D.A., Fungal diversity in the Antarctic active layer, Microbiology (Moscow), 2014, vol. 83, no. 2, pp. 94–101.

    Article  CAS  Google Scholar 

  18. Konova, I.V., Sergeeva, Ya.E., Galanina, L.A., Kochkina, G.A., Ivanushkina, N.E., and Ozerskaya, S.M., Lipid synthesis by Geomyces pannorum under the impact of stress factors, Microbiology (Moscow), 2009, vol. 78, no. 1, pp. 42–47.

    Article  CAS  Google Scholar 

  19. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, no. 6, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leong, S.L.L., Lantz, H., Pettersson, O.V., Frisvad, J.C., Thrane, U., Heipieper, H.J., Dijksterhuis, J., Grabherr, M., Pettersson, M., Tellgren-Roth, C., and Schnürer, J., Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date, Environ. Microbiol., 2015, vol. 17, no. 2, pp. 496–513.

    Article  CAS  PubMed  Google Scholar 

  21. Luo, M., Zang, R., Wang, X., Chen, Z., Song, X., Ju, J., and Huang, H., Natural hydroxamate-containing siderophore acremonpeptides A–D and an aluminum complex of acremonpeptide D from the marine-derived Acremonium persicinum SCSIO 115, J. Nat. Prod., 2019, vol. 82, no. 9, pp. 2594–2600. https://doi.org/10.1021/acs.jnatprod.9b00545

    Article  CAS  PubMed  Google Scholar 

  22. Luo, Y., Xu, W., Luo, Z., and Pang, K., Diversity and temperature adaptability of cultivable fungi in marine sediments from the Chukchi Sea, Bot. Mar., 2020, vol. 63, no. 2, pp. 197–207. https://doi.org/10.1515/bot-2018-0119

    Article  Google Scholar 

  23. Mamaeva, E.V., Galach’yants, Y.P., Khabudaev, K.V., Petrova, D.P., Pogodaeva, T.V., Khodzher, T.B., and Zemskaya, T.I., Metagenomic analysis of microbial communities of the sediments of the Kara Sea shelf and the Yenisei Bay, Microbiology (Moscow), 2016, vol. 85, no. 2, pp. 220–230.

    Article  CAS  Google Scholar 

  24. Margesin, R. and Miteva, V., Diversity and ecology of psychrophilic microorganisms, Res. Microbiol., 2011, vol. 162, no. 3, pp. 346–361. https://doi.org/10.1016/j.resmic.2010.12.004

    Article  PubMed  Google Scholar 

  25. Martorell, M.M., Ruberto, L.A.M., Fernandez, P.M., De Figueroa, L.I.C., and Mac Cormack, W.P., Biodiversity and enzymes bioprospection of Antarctic filamentous fungi, Antarct. Sci., 2019, vol. 31, no. 1, pp. 3–12. https://doi.org/10.1017/S0954102018000421

    Article  Google Scholar 

  26. Namsaraev, Z., Kozlova, A., Tuzov, F., Krylova, A., Izotova, A., Makarov, I., Bezgreshnov, A., Melnikova, A., Trofimova, A., Kuzmin, D., Patrushev, M., and Toshchakov, S., Biogeographic analysis suggests two types of planktonic prokaryote communities in the Barents Sea, Biology (Basel), 2023, vol. 12, p. 1310. https://doi.org/10.3390/biology12101310

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ogaki, M.B., Pinto, O.H.B., Vieira, R., Neto, A.A., Convey, P., Carvalho-Silva, M., Rosa, C.A., Camara, P., and Rosa, L.H., Fungi present in Antarctic deep-sea sediments assessed using DNA metabarcoding, Microb. Ecol., 2021, vol. 82, pp. 157–164. https://doi.org/10.1007/s00248-020-01658-8

    Article  CAS  PubMed  Google Scholar 

  28. Ozerskaya, S., Kochkina, G., Ivanushkina, N., and Gilichinsky, D., Fungi in permafrost, in Permafrost Soils, Margesin, R., Ed., Berlin Heidelberg: Springer, 2009, pp. 85–95. https://doi.org/10.1007/978-3-540-69371-0_7

  29. Ozerskaya, S.M., Kochkina, G.A., Ivanushkina, N.E., Knyazeva, E.V., and Gilichinskii, D.A., The structure of micromycete complexes in permafrost and cryopegs of the Arctic, Microbiology (Moscow), 2008, vol. 77, no. 4, pp. 482–489.

    Article  CAS  Google Scholar 

  30. Rapp, J.Z., Fernández-Méndez, M., Bienhold, C., and Boetius, A., Effects of ice-algal aggregate export on the connectivity of bacterial communities in the Central Arctic Ocean, Front. Microbiol., 2018, vol. 9, p. 1035.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rice, A.V. and Currah, R.S., Oidiodendron: A survey of the named species and related anamorphs of Myxotrichum, Stud. Mycol., 2005, vol. 53, no. 1, pp. 83–120. https://doi.org/10.3114/sim.53.1.83

    Article  Google Scholar 

  32. Ryvarden, L. and Melo, I., Poroid Fungi of Europe, Synopsis Fungorum 37, Oslo: Fungiflora, 2017, 2nd ed.

  33. Sarkar, S., Singh, N.A., and Rai, N., Xerophilic fungi: physiology, genetics and biotechnology, in Extremophilic Fungi: Ecology, Physiology and Applications, Sahay, S., Ed., Singapore: Springer Nature Singapore, 2022, pp. 253–270.

  34. Savvichev, A.S., Rusanov, I.I., Kadnikov, V.V., Beletsky, A.V., Zakcharova, E.E., Samylina, O.S., Sigalevich, P.A., Semiletov, I.P., Ravin, N.V., and Pimenov, N.V., Biogeochemical activity of methane-related microbial communities in bottom sediments of cold seeps of the Laptev Sea, Microorganisms, 2023, vol. 11, p. 250. https://doi.org/10.3390/microorganisms11020250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sayed, A.M., Hassan, M.H., Alhadrami, H.A., Hassan, H.M., Goodfellow, M., and Rateb, M.E., Extreme environments: microbiology leading to specialized metabolites, J. Appl. Microbiol., 2020, vol. 128, no. 3, pp. 630–657. https://doi.org/10.1111/jam.14386

    Article  CAS  PubMed  Google Scholar 

  36. Shukla, S. and Shukla, H., Ecology, physiology, and diversity of piezophilic fungi, in Extremophilic Fungi: Ecology, Physiology and Applications, Sahay, S., Ed., Singapore: Springer Nature Singapore, 2022, pp. 141–170. https://doi.org/10.1007/978-981-16-4907-3_8

  37. Simonato, F., Campanaro, S., Lauro, F.M., Vezzi, A., D’Angelo, M., Vitulo, N., Valle, G., and Bartlett, D.H., Piezophilic adaptation: a genomic point of view, J. Biotechnol., 2006, vol. 126, no. 1, pp. 11–25. https://doi.org/10.1016/j.jbiotec.2006.03.038

    Article  CAS  PubMed  Google Scholar 

  38. Stakhov, V.L., Gubin, S.V., Maksimovich, S.V., Rebrikov, D.V., Savilova, A.M., Kochkina, G.A., Ozerskaya, S.M., Ivanushkina, N.E., and Vorobyova, E.A., Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits, Microbiology (Moscow), 2008, vol. 77, no. 3, pp. 348–355.

    Article  CAS  Google Scholar 

  39. Wang, Y.N., Meng, L.H., and Wang, B.G., Progress in research on bioactive secondary metabolites from deep-sea derived microorganisms, Mar. Drugs, 2020, vol. 18, no. 12, p. 614. https://doi.org/10.3390/md18120614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yurchenko, A.N., Girich, E.V., and Yurchenko, E.A., Metabolites of marine sediment-derived fungi: actual trends of biological activity studies, Mar. Drugs, 2021, vol. 19, no. 2, p. 88. https://doi.org/10.3390/md19020088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to T.V. Kolganova, Head of the “Bioengineering” Core Facility of the Research Center of Biotechnology, for invaluable assistance in establishing the molecular genetic diagnosis of the isolated fungi, as well as to the researchers and the crew of RV Akademik Mstislav Keldysh for the provided samples of bottom sediments.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2021-1051. It was carried out according to State Assignments to the Pushchino Scientific Center for Biological Research and to the Federal Research Center of Biotechnology of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kochkina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Timchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochkina, G.A., Pinchuk, I.P., Ivanushkina, N.E. et al. Fungi of the Arctic Seas. Microbiology 93, 282–292 (2024). https://doi.org/10.1134/S002626172360502X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626172360502X

Keywords:

Navigation