Skip to main content
Log in

Wedge indentation of a thin film on a substrate based on micromorphic plasticity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this article, we use the small strain micromorphic plasticity (MP) to study the wedge indentation of a thin film on a substrate and find qualitative agreement with experiments. A two-dimensional plane strain finite element formulation of the entire MP theory framework is outlined. The generalization of the radial return method for modeling the elasto-plastic deformation is presented. The numerical results show that the MP theory is capable of describing the initial fall in hardness at small depth of indentation and then the rise at larger depth for a soft film on a hard substrate. The indentation force and hardness increase with decreasing film thickness for a given depth. It is also shown that the hardness falls monotonically as the indentation depth increases and never approaches a constant for a hard film on a soft substrate. Contrary to the soft film/hard substrate system, the force and hardness diminish with decreasing film thickness for a given depth. Besides, the influences of internal length scale and hardening modulus of the film on hardness predictions are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–488 (1994)

    Article  Google Scholar 

  2. Stolken J.S., Evans A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  3. Nix W.D., Gao H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)

    Article  MATH  Google Scholar 

  4. Bazant Z.P., Jirásek M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128, 1119–1149 (2002)

    Article  Google Scholar 

  5. Bazant Z.P.: Nonlocal damage theory based on micromechanics of crack interactions. J. Eng. Mech. 120, 593–617 (1994)

    Article  Google Scholar 

  6. Fleck N.A., Hutchinson J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  MATH  Google Scholar 

  7. Hwang K.C., Guo Y., Jiang H., Huang Y., Zhuang Z.: The finite deformation theory of Taylor-based nonlocal plasticity. Int. J. Plast. 20, 831–839 (2004)

    Article  MATH  Google Scholar 

  8. Zhang F., Saha R., Huang Y., Nix W.D., Hwang K.C., Qu S., Li M.: Indentation of a hard film on a soft substrate: strain gradient hardening effects. Int. J. Plast. 23, 25–43 (2007)

    Article  MATH  Google Scholar 

  9. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eringen A.C.: Microcontinuum Field Theories, I Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  11. Forest S., Sievert R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  12. Forest S., Sievert R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Steinmann P., Stein E.: A unifying treatise of variational principles for two types of micropolar continua. Acta Mech. 121, 215–232 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Arslan H., Sture S.: Finite element analysis of localization and micro–macro structure relation in granular materials part I: formulation. Acta Mech. 197, 135–152 (2008)

    Article  MATH  Google Scholar 

  15. Sansour C., Skatulla S., Zbib H.: A formulation for the micromorphic continuum at finite inelastic strains. Int. J. Solids Struct. 47, 1546–1554 (2010)

    Article  MATH  Google Scholar 

  16. Regueiro R.A.: On finite strain micromorphic elastoplasticity. Int. J. Solids Struct. 47, 786–800 (2009)

    Article  Google Scholar 

  17. Grammenoudis P., Tsakmakis C., Hofer D.: Micromorphic continuum part II: finite deformation plasticity coupled with damage. Int. J. N. A. Mech. 44, 957–974 (2009)

    Article  Google Scholar 

  18. Vernerey F., Liu W.K., Moran B.: Multi-scale micromorphic theory for hierarchical materials. J. Mech. Phys. Solids 55, 2603–2651 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma Q., Clarke D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  Google Scholar 

  20. Swadener J., George E., Pharr G.: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002)

    Article  MATH  Google Scholar 

  21. Swadener J., Taljat B., Pharr G.: Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res. 16, 2091–2102 (2001)

    Article  Google Scholar 

  22. Saha R., Nix W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23–38 (2002)

    Article  Google Scholar 

  23. Wei Y., Hutchinson J.W.: Hardness trends in micron scale indentation. J. Mech. Phys. Solids 51, 2037–2056 (2003)

    Article  MATH  Google Scholar 

  24. Saha R., Xue Z., Huang Y., Nix W.D.: Indentation of a soft metal film on a hard substrate: strain gradient hardening effects. J. Mech. Phys. Solids 49, 1997–2014 (2001)

    Article  MATH  Google Scholar 

  25. Balint D., Deshpande V., Needleman A., Van der Giessen E.: Discrete dislocation plasticity analysis of the wedge indentation of films. J. Mech. Phys. Solids 54, 2281–2303 (2006)

    Article  MATH  Google Scholar 

  26. Widjaja A., Van der Giessen E., Needleman A.: Discrete dislocation analysis of the wedge indentation of polycrystals. Acta Mater. 55, 6408–6415 (2007)

    Article  Google Scholar 

  27. Bolesta A., Fomin V.: Molecular dynamics simulation of sphere indentation in a thin copper film. Phys. Mesomech. 12, 117–123 (2009)

    Article  Google Scholar 

  28. Chambon R., Caillerie D., Matsuchima T.: Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies. Int. J. Solids Struct. 38, 8503–8527 (2001)

    Article  MATH  Google Scholar 

  29. Abaqus/Standard 6.9, 2009. Abaqus Users’ Manual

  30. Zervos A.: Finite elements for elasticity with microstructure and gradient elasticity. Int. J. Numer. Methods Eng. 73, 564–595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Niordson C.F., Hutchinson J.W.: Non-uniform plastic deformation of micron scale objects. Int. J. Numer. Methods Eng. 56, 961–975 (2003)

    Article  MATH  Google Scholar 

  32. Fredriksson P., Larsson P.L.: Wedge indentation of thin films modelled by strain gradient plasticity. Int. J. Solids Struct. 45, 5556–5566 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z.H., Liu, Z.L., Liu, X.M. et al. Wedge indentation of a thin film on a substrate based on micromorphic plasticity. Acta Mech 221, 133–145 (2011). https://doi.org/10.1007/s00707-011-0483-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0483-1

Keywords

Navigation