Skip to main content

Advertisement

Log in

A seasonal study of the atmospheric dynamics over the Iberian Peninsula based on circulation types

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A seasonal analysis of the atmospheric circulation over the Iberian Peninsula (IP) based on circulation types (CTs) obtained from sea level pressure and 500-hPa geopotential height is presented. The study covers the period of 1958–2008, when a high variability and important changes in winter and spring precipitation and temperature have been reported. Frequency, persistence, and the most probable transitions of the circulation types are analyzed. Among the clustering methods available in the literature, two of the most reliable classification methods have been tested, K-means and simulated annealing and diversified randomization. A comparison of both methods over the IP is presented for winter (DJF). The quality of the circulation types obtained through both methods as well as the better stability achieved by K-means suggest this method as more appropriated for our target area. Twelve CTs were obtained for each season and were analyzed. The patterns obtained were regrouped in five general situations: anticyclonic, cyclonic, zonal, summertime, and hybrid-mixed. The analysis of frequencies of these situations offers a similar characterization of the atmospheric circulation that others previously obtained by subjective methods. The analysis of the trends in frequency and persistence for each CT shows few significant trends, mainly in winter and spring with a general decrease of the cyclonic patterns and an increase of the anticyclonic situations. This can be related to the negative precipitation trends reported by other authors. Regarding the persistence, an interesting result is that there is a high interannual variability of the persistence in autumn and spring, when patterns can persist longer than in other seasons. An analysis of the most probable transitions between the CTs has been performed, revealing the existence of cyclic sequences in all seasons. These sequences are related to the high frequency of certain patterns such as the anticyclonic situations in winter. Finally, a clear seasonal dependence of the transitions between cyclonic situations associated with extratropical disturbances was found. This dependence suggests that the transitions of low-pressure systems towards the south of the IP are more likely in spring and autumn than in winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bárdossy A, Caspary H (1990) Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989. Theor Appl Climatol 42:155–167

    Article  Google Scholar 

  • Beck C, Philipp A (2010) Evaluation and comparison of circulation type classifications for the European domain. Phys Chem Earth, Parts A/B/C 35(9–12):374–387. doi:10.1016/j.pce.2010.01.001

    Article  Google Scholar 

  • Bermejo M, Ancell R (2009) Observed changes in extreme temperatures over Spain during 1957–2002, using weather types. Rev Climatol 9:45–61

    Google Scholar 

  • Bladé I, Cacho I, Castro-Díez Y, Gomis D, González-Sampériz P, Miguez-Macho G, Pérez F, Rodríguez-Fonseca B, Rodríguez-Puebla C, Sánchez E, Sotillo M, Valero-Garcés B, Vargas-Yáez M (2010) Clima en España: Pasado, presente y futuro. Tech rep, CLIVAR-España

  • Brunet M, Jones P, Sigró J, Saladié O, Aguilar E, Moberg A, Della-Marta P, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:12,117

    Article  Google Scholar 

  • Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3:1–27

    Google Scholar 

  • Casado M, Pastor M, Doblas-Reyes F (2008) Euro-Atlantic circulation types and modes of variability in winter. Theor Appl Climatol 96:17–29

    Article  Google Scholar 

  • Cassou C, Terray L, Phillips A (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811

    Article  Google Scholar 

  • Catell R (1966) The scree test for the number of pcs. Multivar Behav Res 1:245–276

    Article  Google Scholar 

  • Crane R, Barry R (1988) Comparison of the MSL synoptic pressure patterns of the Artic as observed and simulated by the GISS general circulation model. Meteoro Atmos Phys 39:169–183

    Article  Google Scholar 

  • Demezure M, Werner M, van Lipzig N, Roeckner E (2008) An analysis of present and future echam5 pressure fields using a classification of circulation patterns. Int J Climatol 29:1796–1810

    Article  Google Scholar 

  • Fereday D, Knight J, Scaife A, Folland C (2008) Cluster analysis of North Atlantic-European circulation types and links with tropical Pacific Sea surface temperatures. J Clim 21:3687–3703

    Article  Google Scholar 

  • Font-Tullot I (2000) Climatología de España y Portugal. University of Salamanca, Spain

    Google Scholar 

  • Gallego F (1995) Situaciones de flujo mediterráneo y precipitaciones asociadas. aplicación a la predicción cuantitativa en la cuenca del segura. PhD thesis, Universidad de Murcia, Spain

  • García-Bustamante E, González-Rouco J, Navarro J, Xoplaki E, Jiménez P, Montávez J (2012) North Atlantic atmospheric circulation and surface wind in the northeast of the Iberian Peninsula: uncertainty and long term downscaled variability. Clim Dyn 38(1):141–160. doi:10.1007/s00382-010-0969-x

    Article  Google Scholar 

  • Gesterngarbe F, Werner P (1997) A method to estimate the statistical confidence of cluster separation. Theor Appl Climatol 57:103–110

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:08,707

    Article  Google Scholar 

  • Goodess C, Palutikof J (1998) Development of daily rainfall scenarios for Southeast Spain using a circulation-type approach to downscaling. Int J Climatol 18(10):1051–1083

    Article  Google Scholar 

  • Hannachi A, Jolliffe I, Stephenson D (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27(9):1119–1152

    Article  Google Scholar 

  • Hartigan J, Wong M (1979) A k-means clustering algorithm. Appl Stat 28:100–108

    Article  Google Scholar 

  • Hess P, Brezowsky H (1952) Katalog der Grosswetterlagen Europas. Deutscher Wetterdienst in d. US-Zone

  • Hewitson B, Crane R (2002) Self-organizing maps: applications to synoptic climatology. Clim Res 22:13–26

    Article  Google Scholar 

  • Hulme H, Briffal K, Jones P, Senior C (1993) Validation of GCM control simulations using indices of daily airflow types over the British Isles. Clim Dyn 9:95–105

    Article  Google Scholar 

  • Huth R (1996) An intercomparison of computer-assisted circulation classification methods. Int J Climatol 16:893–922

    Article  Google Scholar 

  • Huth R (1997) Continental-scale circulation in the UKHI GCM. J Clim 10:1545–1561

    Article  Google Scholar 

  • Huth R (2000) A circulation classification scheme applicable in GCM studies. Theor Appl Climatol 67:1–18

    Article  Google Scholar 

  • James P (2007) An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe. Theor Appl Climatol 88:17–42

    Article  Google Scholar 

  • Jiménez P, González-Rouco J, Montávez J, García-Bustamante E, Navarro J (2008) Climatology of wind patterns in the northeast of the Iberian Peninsula. Int J Climatol 29:501–525

    Article  Google Scholar 

  • Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis, vol 39. Wiley Online Library, NY

    Book  Google Scholar 

  • Kendall M (1970) Rank correlation methods. Charles Griffin, London

    Google Scholar 

  • Key J, Crane R (1986) A comparison of synoptic classification schemes based on objective procedures. Int J Climatol 6:375–388

    Article  Google Scholar 

  • Kirchhofer W (1974) Classification of European 500 mb patterns. Working reports of the Swiss Meteorological Institute, Swiss Meteorological Institute, Zurich

  • Kyselý J, Huth R (2006) Changes in atmospheric circulation over Europe detected by objective and subjective methods. Theor Appl Climatol 85:19–36

    Article  Google Scholar 

  • Lamb H (1950) Types and spells of weather around the year in the British Isles: annual trends, seasonal structure of the year, singularities. Q J Roy Meteor Soc 76:393–429

    Article  Google Scholar 

  • López-Bustins J, Martín-Vide J, Sánchez-Lorenzo A (2008) Iberia winter rainfall trends based upon changes in teleconnection and circulation patterns. Glob Planet Change 63:171–176

    Article  Google Scholar 

  • Lorenz E (1956) Technical report. Statistical forecast project report 1. Department of Meteorology. MIT 49, vol 1. Massachusetts Institute of Technology, chap Empirical orthogonal functions and statistical weather prediction, p 52

  • Lund I (1963) Map-pattern classification by statistical methods. J Appl Meteorol 2:56–65

    Article  Google Scholar 

  • Michelangeli P, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationary. J Atmos Sci 52:1237–1256

    Article  Google Scholar 

  • Milligan G (1980) An examination of the effect of six types of error perturbation of fifteen clustering algorithms. Psychometrika 45:325–342

    Article  Google Scholar 

  • Paredes D, Trigo R, García-Herrera R, Trigo I (2006) Understanding precipitation changes in Iberia in early spring: weather typing and storm-tracking approaches. J Hydrometerol 7:101–113

    Article  Google Scholar 

  • Petisco E (2003) Metodología para una caracterización de la circulación atmosférica en el entorno de la Península Ibérica y Baleares.nt n 9. Tech rep, INM

  • Philipp A, Della-Marta P, JJacobett, Fereday D, Jones P, Moberg A, Wanner H (2006) Long-term variability of day North Atlantic-European pressure patterns since 1850 classified by simulated annealing clustering. J Clim 20:4065–4095

    Article  Google Scholar 

  • Philipp A, Bartholy J, Beck C, Erpicum M, Esteban P, Fettweis X, Huth R, James P, Jourdain S, Kreienkamp F, Krennert T, Lykoudis S, Michalides SC, Pianko-Kluczynska K, Post P, lvarez DR, Schiemann R, Spekat A, Tymvios FS (2010) Cost733cat a database of weather and circulation type classifications. Phys Chem Earth, Parts A/B/C 35(9–12):360–373. doi:10.1016/j.pce.2009.12.010

    Article  Google Scholar 

  • Preisendorfer R (1988) Principal components analysis in meteorology and oceanography. Elsevier Science Ltd, Amsterdam

    Google Scholar 

  • Rasilla D (2003) Aplicación de un método de clasificación sinóptica a la Península Ibérica. Invest Geogr 30:27–44

    Google Scholar 

  • Richman M (1981) Obliquely rotated principal componentes: an improved meteorological map typing technique. J Appl Meteorol 24:1145–1149

    Article  Google Scholar 

  • Romero R, Sumner G, Ramis C, Genovés A (1999) A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area. Int J Climatol 19:765–785

    Article  Google Scholar 

  • Sanchez-Gómez E, Terray L (2005) Largue scale atmospheric dynamics and local intense precipitation epidodes. Geophys Res Lett 32:24,711

    Article  Google Scholar 

  • Serrano A, Garcia J, Mateos V, Cancillo M, Garrido J (1999) Monthly modes of variation of precipitation over the Iberian Peninsula. J Clim 12:2894–2919

    Article  Google Scholar 

  • Storch V, Zwiers W (1999) Statistical analysis in climate research. In: Empirical ortogonal functions. Cambridge University Press, Cambridge. pp 135–192

    Google Scholar 

  • Uppala S, Kallberg P, Simmons A, Andra U, da Costa Beechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Sagemann, EH E, Hoskins B, Isaksen L, Janssen P, RJenne, McNally A, Mahfouf J, Mocrette J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, AU A, Vasiljevic D, Viterbo P, Woollen J (2005) The era-40 re-analysis. Q J Roy Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • Wang X (2008) Penalized maximal f test for detecting undocumented mean shift without trend change. J Atmos Oceanic Technol 25(3):368–384

    Article  Google Scholar 

  • Wilks D (1995) Statistical methods in the atmospheric sciencies: an introduction. International geophysics series, Academic Press, MA

    Google Scholar 

  • Yiou P, Nogaj M (2004) Extreme climatic events and weather regimes over the North Atlantic: when and where? Geophys Res Lett 31:1–4

    Article  Google Scholar 

  • Yiou P, Goubanova K, Nogaj M (2008) Weather regime dependence of extre value statistics for summer temperature and precipitation. Nonlinear Process Geophys 15:365–378

    Article  Google Scholar 

Download references

Acknowledgements

This study received support from the Spanish Ministry of Environment (project ESCENA) and the Spanish Ministry of Science and Technology (projects SPEQMORE-CGL2008-06558-C02-02/CLI and SPEQTRES-CGL2011-29672-C02-02). J.J. Gomez-Navarro thanks the Spanish Ministry of Education for his Doctoral scholarship (AP2006-04100), and P. Jimenez-Guerrero thanks the Ramon y Cajal Programme of the Spanish Ministry of Science and Innovation. Thanks to Fidel Gonzalez-Rouco for the stimulating discussions. We would like to acknowledge the anonymous referees for their valuable comments, which improved the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pedro Montavez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Valero, J.A., Montavez, J.P., Jerez, S. et al. A seasonal study of the atmospheric dynamics over the Iberian Peninsula based on circulation types. Theor Appl Climatol 110, 291–310 (2012). https://doi.org/10.1007/s00704-012-0623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0623-0

Keywords

Navigation