Skip to main content

Advertisement

Log in

Zircon U–Pb geochronology, and elemental and Sr–Nd–Hf–O isotopic geochemistry of post-collisional rhyolite in the Chiang Khong area, NW Thailand and implications for the melting of juvenile crust

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Volcanic rocks are widely exposed within the Chiang Khong–Lampang–Tak igneous zone in NW Thailand. A representative rhyolite sample from the Chiang Khong area yielded a zircon U–Pb age of 230.7 ± 1.1 Ma (n = 20, MSWD = 0.98). The Chiang Khong rhyolites are characterized by low TiO2 (0.29–0.62 wt%) and MgO (0.04–0.82 wt%) with A/CNK values of 0.95–1.06 (one outlier at 1.47), and can be classified as highly fractionated I-type rhyolites. They are enriched in LILEs and LREEs, and depleted in HFSEs. Two representative samples have 87Sr/86Sr (i) ratios of 0.70497 and 0.70527, and the εNd (t) values fall at +1.1 and +1.3, respectively. εHf (t) and δ18O in zircon are between +4.7 to +12.0 and 5.3 to 5.9 ‰, respectively. Our geochemical data suggest that the Chiang Khong rhyolites formed by partial melting of juvenile mafic lower crust in a post-collisional setting. Deep crustal anatexis was probably induced by upwelling asthenospheric mantle, shortly after slab detachment subsequent to closure of the Paleo-Tethys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amelin Y, Lee DC, Halliday AN, Pidgeon RT (1999) Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399:252–255

    Article  Google Scholar 

  • Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146

    Article  Google Scholar 

  • Audétat A (2010) Source and evolution of molybdenum in the porphyry Mo (–Nb) deposit at Cave Peak, Texas. J Petrol 51:1739–1760

    Article  Google Scholar 

  • Barr SM, Charusiri P (2011) Volcanic rocks. In: Ridd MF, Barber AJ, Crow MJ (eds) The geology of Thailand. Geological Society, London, pp 415–439

    Google Scholar 

  • Barr SM, MacDonald AS, Ounchanum P, Yaowanoiyothin W (2000) Petrochemistry, U–Pb (zircon) age, and paleotectonic setting of the Lampang volcanic belt, northern Thailand. J Geol Soc Lond 157:553–563

    Article  Google Scholar 

  • Barr SM, Macdonald AS, Ounchanum P, Hamilton MA (2006) Age, tectonic setting and regional implications of the Chiang Khong volcanic suite, northern Thailand. J Geol Soc Lond 163:1037–1046

    Article  Google Scholar 

  • Barth AP, Wooden JL, Tosdal RM, Morrison J (1995) Crustal contamination in the petrogenesis of a calc-alkalic rock series: Josephine mountain intrusion, California. Geol Soc Am Bull 107:201–212

    Article  Google Scholar 

  • Bird P (1979) Continental delamination and the Colorado Plateau. J Geophys Res 84:7561–7571

    Article  Google Scholar 

  • Blichert TJ, Albarède F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Bodet F, Schärer U (2000) Evolution of the SE-Asian continent from U–Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers. Geochim Cosmochim Acta 64:2067–2091

    Article  Google Scholar 

  • Clemens JD, Stevens G, Farina F (2011) The enigmatic sources of I-type granites: the peritectic connexion. Lithos 126:174–181

    Article  Google Scholar 

  • Cocker JD, Griffin BJ, Muehlenbachs K (1982) Oxygen and carbon isotope evidence for seawater–hydrothermal alteration of the Macquarie Island ophiolite. Earth Planet Sci Lett 61:112–122

    Article  Google Scholar 

  • Cooke RA, O’Brien PJ (2001) Resolving the relationship between high P–T rocks and gneisses in collisional terrane: an example from the Gföhl gneiss–granulite association in the Moldanubian Zone, Austria. Lithos 58:33–54

    Article  Google Scholar 

  • Davies JH, von Blanckenburg F (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102

    Article  Google Scholar 

  • Dong GC, Mo XX, Zhao ZD, Zhu DC, Goodman RC, Kong H, Wang S (2013) Zircon U–Pb dating and the petrological and geochemical constraints on Lincang granite in Western Yunnan, China: implications for the closure of the Paleo-Tethys Ocean. J Asian Earth Sci 62:282–294

    Article  Google Scholar 

  • Eiler JM, Schiano P, Kitchen N, Stolper EM (2000) Oxygen–isotope evidence for recycled crust in the sources of mid–ocean–ridge basalts. Nature 403:530–534

    Article  Google Scholar 

  • Fan WM, Wang YJ, Zhang YH, Zhang YZ, Jourdan F, Zi JW, Liu HC (2015) Paleotethyan subduction process revealed from Triassic blueschists in the Lancang tectonic belt of Southwest China. Tectonophysics. doi:10.1016/j.tecto.2014.12.021

    Google Scholar 

  • Feng QL, Chonglakmani C, Helmcke D, Helmcke RI, Liu BP (2005) Correlation of Triassic stratigraphy between the Simao and Lampang-Phrase basins: implications for the tectonopaleogeography of Southeast Asia. J Asian Earth Sci 24:777–785

    Article  Google Scholar 

  • Gardiner NJ, Searle MP, Morley CK, Whitehouse MP, Spencer CJ, Robb LJ (2015) The closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: new insights from zircon U–Pb and Hf isotope data. Gondwana Res. doi:10.1016/j.gr.2015.03.001

    Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous Oceanic Crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater–hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, O’Reilly SY, van Achterberg E, Shee SR (2000) The Hf isotope composition of cratonic mantle: lAM–MC–ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Hennig D, Lehmann B, Frei D, Belyatsky B, Zhao XF, Cabral AR, Zeng PS, Zhou MF, Schmidt K (2009) Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U-Pb age and Nd-Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos 113:408–422

    Article  Google Scholar 

  • Intasopa SB, Dunn T (1994) Petrology and Sr–Nd isotopic systems of the basalts and rhyolites, Loei, Thailand. J Southeast Asian Earth Sci 9:167–180

    Article  Google Scholar 

  • Jian P, Liu D, Sun X (2003) SHRIMP dating of Baimaxueshan and Ludian granitoid batholiths, northwestern yunnan province, and its geological implications. Acta Geol Sin 24:337–342

    Google Scholar 

  • Jungyusuk N, Khositanont S (1992) Volcanic rocks and associated mineralization in Thailand. In: Piancharoen C (ed) Proceedings of the national conference on geologic resources of Thailand: potential for future development. Bangkok, pp 528–532

  • Kong HL, Dong GC, Mo XX, Zhao ZD, Zhu DC, Wang S, Li R, Wang QL (2012) Petrogenisis of Lincang granites in Sanjiang area of Western Yunnan province: constraints from geochemistry, zircon U–Pb geochronology and Hf isotope. Acta Pet Sin 28:1438–1452

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckheisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  • Leloup PH, Lacassin R, Tapponnier P, Schärer U, Zhong DL, Liu XH, Zhang LS, Ji SC, Trong Trinh P (1995) The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics 251:3–84

    Article  Google Scholar 

  • Li XH, Li ZX, Zhou HW, Liu Y, Kinny PD (2002) U–Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Res 113:135–154

    Article  Google Scholar 

  • Li XH, Li WX, Li QL, Wang XC, Liu Y, Yang YH (2010a) Petrogenesis and tectonic significance of the 850 Ma Gangbian alkaline complex in South China: evidence from in situ zircon U–Pb dating, Hf–O isotopes and whole-rock geochemistry. Lithos 114:1–15

    Article  Google Scholar 

  • Li XH, Long WG, Li QL (2010b) Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf–O isotopes and U–Pb age. Geostand Geoanal Res 34:117–134

    Article  Google Scholar 

  • Li XH, Tang GQ, Gong B, Yang YH, Hou KJ, Hu ZC, Li QL, Liu Y, Li WX (2013) Qinghu zircon: a working reference for microbeam analysis of U–Pb age and Hf and O isotopes. Chin Sci Bull 58:4647–4654

    Article  Google Scholar 

  • Liu BP, Feng QL, Fang NQ (1991) Tectonic evolution of the Paleo-Tethys in Changning-Menglian belt and adjacent regions, western Yunnan. J China Univ Geosci 2:18–28 (in Chinese with English abstract)

    Google Scholar 

  • Liu HC, Wang YJ, Fan WM, Zi JW, Cai YF, Yang G (2014) Petrogenesis and tectonic implications of Late-Triassic high ɛNd (t)–ɛHf (t) granites in the Ailaoshan tectonic zone (SW China). Sci China Earth Sci 57:2181–2194

    Article  Google Scholar 

  • Ludwig KR (2003) User’s manual for Isoplot 3.00: a geochronological toolkit for microsoft excel. Berkeley Geochronology Center, Berkeley, pp 1–70

    Google Scholar 

  • Luo W, Yin H (1988) Characteristics of the Ludian granite, northwest Yunnan, China. Acta Petrol Sin 2:69–77 (in Chinese with English abstract)

    Google Scholar 

  • Metcalfe I (2002) Permian tectonic framework and palaeogeography of SE Asia. J Asian Earth Sci 20:551–566

    Article  Google Scholar 

  • Mo XX, Shen SY, Zhu QW (1998) Volcanics–ophiolite and mineralization of middle and southern part in Sanjiang, Southern China. Geological Publishing House, Beijing, pp 1–128 (in Chinese)

    Google Scholar 

  • Panjasawatwong Y (2003) Tectonic setting of the permo-triassic Chiang Khong volcanic rocks, Northern Thailand based on petrochemical characteristics. Gondwana Res 6:743–755

    Article  Google Scholar 

  • Panjasawatwong Y, Zaw Khin, Chantaramee S, Limtrakun P, Pirarai K (2006) Geochemistry and tectonic setting of the Central Loei volcanic rocks, Pak Chom area, Loei, northeastern Thailand. J Asian Earth Sci 26:77–90

    Article  Google Scholar 

  • Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19:120–125

    Google Scholar 

  • Peccerillo A, Barberio MR, Yirgu G, Ayalew D, Barbieri M, Wu TW (2003) Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. J Petrol 44:2003–2032

    Article  Google Scholar 

  • Peng TP, Wang YJ, Fan WM, Liu DY, Shi YR, Miao LC (2006) SHRIMP zircon U–Pb geochronology of early Mesozoic felsic igneous rocks from the southern Lancangjiang and its tectonic implications. Sci China: Ser D 49:1032–1042

    Article  Google Scholar 

  • Peng TP, Wang YP, Zhao GC, Fan WM, Peng BX (2008) Arc–like volcanic rocks from the southern Lancangjiang zone, SW China: geochronological and geochemical constraints on their petrogenesis and tectonic implications. Lithos 102:358–373

    Article  Google Scholar 

  • Peng TP, Wilde SA, Wang Y, Fan W, Peng B (2013) Mid-Triassic felsic igneous rocks from the southern Lancangjiang Zone, SW China: petrogenesis and implications for the evolution of Paleo-Tethys. Lithos 168–169:15–32

    Article  Google Scholar 

  • Phajuy B (2001) Geochemistry, petrology and tectonic setting of Permo–Triassic mafic volcanic rocks in the northern part of Chiang Khong–Tak volcanic belt. MS Thesis, Chiang Mai University, Chiang Mai

  • Qian X, Feng QL, Chonglakmani C, Monjai D (2013) Geochemical and geochronological constrains on the Chiang Khong volcanic rocks (northwestern Thailand) and its tectonic implications. Front Earth Sci 7:508–521

    Article  Google Scholar 

  • Qian X, Feng QL, Yang WQ, Wang YJ, Chonglakmani C, Monjai D (2015) Arc-like volcanic rocks in NW Laos: geochronological and geochemical constraints and their tectonic implications. J Asian Earth Sci 98:342–357

    Article  Google Scholar 

  • Qian X, Feng QL, Wang YJ, Chonglakmani C, Monjai D (2016a) Geochronological and geochemical constraints on the mafic rocks along the Luang Prabang zone: carboniferous back-arc setting in northwest Laos. Lithos 245:60–75

    Article  Google Scholar 

  • Qian X, Wang YJ, Feng QL, Zi JW, Zhang YZ, Chonglakmani C (2016b) Petrogenesis and tectonic implication of the Late Triassic post-collisional volcanic rocks in Chiang Khong, NW Thailand. Lithos 245–251:418–431

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21:825–828

    Article  Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661

    Article  Google Scholar 

  • Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  • Sone M, Metcalfe I (2008) Parallel Tethyan sutures in mainland Southeast Asia: new insights for Paleo-Tethys closure and implications for the Indosinian orogeny. Geoscience 340:166–179

    Article  Google Scholar 

  • Sone M, Metcalfe I, Chaodumrong P (2012) The Chanthaburi terrane of southeastern Thailand: stratigraphic confirmation as a disrupted segment of the Sukhothai Arc. J Asian Earth Sci 61:16–32

    Article  Google Scholar 

  • Srichan W, Crawford AJ, Berry RF (2009) Geochemistry and geochronology of Late Triassic volcanic rocks in the Chiang Khong region, northern Thailand. Isl Arc 18:32–51

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, Special Publications, 42. The Geological Society, London, pp 313–345

    Google Scholar 

  • Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44

    Article  Google Scholar 

  • Turner SP, Platt JP, George RMM, Kelley SP, Pearson DG, Nowell GM (1999) Magmatism associated with orogenic collapse of the Betic-Alboran domain, SE Spain. J Petrol 40:1011–1036

    Article  Google Scholar 

  • Ueno K, Hisada K (2001) The Nan–Uttaradit–Sa Kaeo Suture as a main Paleo-Tethyan suture in Thailand: is it real? Gondwana Res 4:804–806

    Article  Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580

    Article  Google Scholar 

  • von Braun E, Hahn L (1976) Geological map of northern Thailand, sheet 2, Chiang Rai, Scale 1: 250000. Federal Institute for Geosciences and Natural Resources, Stuttgart

    Google Scholar 

  • Wang YJ, Zhang AM, Fan WM, Peng TP, Zhang FF, Zhang YH, Bi XW (2010) Petrogenesis of late Triassic post-collisional basaltic rocks of the Lancangjiang tectonic zone, southwest China, and tectonic implications for the evolution of the eastern Paleotethys: geochronological and geochemical constraints. Lithos 120:529–546

    Article  Google Scholar 

  • Wang S, Dong GC, Mo XX, Zhao ZD, Zhu DC, Kong HL, Wang X, Nie F (2012) Petrological and geochemical characteristics, Ar–Ar geochronology study and their tectonic significance of Triassic volcanic rocks in southern Lancangjiang zone. Acta Petrol Sin 28:1148–1162 (in Chinese with English abstract)

    Google Scholar 

  • Wei GJ, Liang XR, Li XH, Liu Y (2002) Precise measurement of Sr isotopic composition of liquid and solid base using (LP) MC–ICPMS. Geochimica 31:295–299

    Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Article  Google Scholar 

  • Wright JB (1969) A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geol Mag 106:370–384

    Article  Google Scholar 

  • Wu YB, Zheng YF (2004) Genesis of zircon and its constraints on interpretation of U–Pb age. Chin Sci Bull 49:1554–1569

    Article  Google Scholar 

  • Wu HR, Boulter CA, Ke B, Stow DAV, Wang Z (1995) The Changning–Menglian suture zone: a segment of the major Cathaysia–Gondwana divide in Southeast Asia. Tectonophysics 242:267–280

    Article  Google Scholar 

  • Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY (2003a) Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos 66:141–273

    Google Scholar 

  • Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY (2003b) Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67:191–204

    Article  Google Scholar 

  • Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem Geol 234:105–126

    Article  Google Scholar 

  • Yuan H, Gao S, Liu XM, Günther D, Wu FY (2004) Accurate U–Pb age and trace element determinations of zircon by laser ablation–inductively coupled plasma–mass spectrometry. Geostand Geoanal Res 28:353–370

    Article  Google Scholar 

  • Zhang Q, Jin WJ, Wang YL, Li CD, Wang Y, Jia XQ (2006) Ocean lithosphere delamination and the lower crust delamination: the different mechanism and geological implication: comment on the delamination model of lower crust and lithosphere mantle. Acta Petrol Sin 22:2631–2638 (in Chinese with English abstract)

    Google Scholar 

  • Zhang D, Wei J, Fu L, Chen H, Tan J, Li Y, Shi W, Tian N (2015) Formation of the Jurassic Changboshan-Xieniqishan highly fractionated I-type granites, northeastern China: implication for the partial melting of juvenile crust induced by asthenospheric mantle upwelling. Geol J 50:122–138

    Article  Google Scholar 

  • Zhao JH, Zhou MF (2009) Melting of newly formed mafic crust for the formation of Neoproterozoic I-type granite in the Hannan region, South China. J Geol 117:54–70

    Article  Google Scholar 

  • Zhong DL (1998) Paleotethysides in West Yunnan and Sichuan, China. Science Press, Beijing, pp 1–231 (in Chinese)

    Google Scholar 

  • Zhu JJ, Hu RZ, Bi XW, Zhong H, Chen H (2011) Zircon U–Pb ages, Hf–O isotopes and whole-rock Sr–Nd–Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos 126:248–264

    Article  Google Scholar 

  • Zi JW, Cawood PA, Fan WM, Wang YJ, Tohver E (2012) Contrasting rift and subduction–related plagiogranites in the Jinshajiang ophiolitic melange, southwest China, and implications for the Paleo-Tethys. Tectonics. doi:10.1029/2011TC002937

    Google Scholar 

  • Zi JW, Cawood PA, Fan WM, Tohver E, Wang YJ, McCuaig TC, Peng TP (2013) Late Permian-Triassic magmatic evolution in the Jinshajiang orogenic belt, SW China and implications for orogenic processes following closure of the Paleo-Tethys. Am J Sci 313:81–112

    Article  Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci Lett 14:493–571

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (41190073 and 41172202), the China Geological Survey (1212011121256), the National Basic Research Program of China (2014CB440901), “the Fundamental Research Funds for the Central Universities to SYSU” and the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences in Wuhan (MSFGPMR201402). We are grateful to Prof. Wolf-Christian Dullo, Prof. Åke Johansson and another anonymous reviewer for their critical and constructive reviews and comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., Wang, Y., Feng, Q. et al. Zircon U–Pb geochronology, and elemental and Sr–Nd–Hf–O isotopic geochemistry of post-collisional rhyolite in the Chiang Khong area, NW Thailand and implications for the melting of juvenile crust. Int J Earth Sci (Geol Rundsch) 106, 1375–1389 (2017). https://doi.org/10.1007/s00531-016-1338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1338-8

Keywords

Navigation