Skip to main content
Log in

Novel therapeutic approaches for the primary hyperoxalurias

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Loss-of-function mutations in three genes, involved in the metabolic pathway of glyoxylate, result in increased oxalate production and its crystallization in the form of calcium oxalate. This leads to three forms of primary hyperoxaluria—an early-onset inherited kidney disease with wide phenotypic variability ranging from isolated kidney stone events to stage 5 chronic kidney disease in infancy. This review provides a description of metabolic processes resulting in oxalate overproduction and summarizes basic therapeutic approaches. Unfortunately, current treatment of primary hyperoxaluria does not allow the prevention of loss of kidney function or to substantially diminish other symptoms in most patients. However, latest breakthroughs in biotechnology provide new promising directions for drug development. Some of them have already progressed to the level of clinical trials; others are just at the stage of proof of concept. Here we review the most advanced technologies including those that have been harnessed as possible therapeutic modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lange JN, Wood KD, Knight J, Assimos DG, Holmes RP (2012) Glyoxal formation and its role in endogenous oxalate synthesis. Ther Adv Urol 2012:819202. https://doi.org/10.1155/2012/819202

    Article  Google Scholar 

  2. Hoppe B (2012) An update on primary hyperoxaluria. Nat Rev Nephrol 12:467–475. https://doi.org/10.1038/nrneph.2012.113

    Article  CAS  Google Scholar 

  3. Salido E, Pey AL, Rodriguez R, Lorenzo V (2012) Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochim Biophys Acta 1822:1453–1464. https://doi.org/10.1016/j.bbadis.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Shalom E, Frishberg Y (2015) Primary hyperoxalurias: diagnosis and treatment. Pediatr Nephrol 30:1781–1791. https://doi.org/10.1007/s00467-014-3030-1

    Article  PubMed  Google Scholar 

  5. Hulton SA (2016) The primary hyperoxalurias: a practical approach to diagnosis and treatment. Int J Surg 36:649–654. https://doi.org/10.1016/j.ijsu.2016.10.039

    Article  PubMed  Google Scholar 

  6. Sas DJ, Harris PC, Milliner DS (2019) Recent advances in the identification and management of inherited hyperoxalurias. Urolithiasis 47:79–89. https://doi.org/10.1007/s00240-018-1093-3

    Article  PubMed  Google Scholar 

  7. Hopp K, Cogal AG, Bergstralh EJ, Seide BM, Olson JB, Meek AM, Lieske JC, Milliner DS, Harris PC, Rare Kidney Stone Consortium (2015) Phenotype-genotype correlations and estimated carrier frequencies of primary Hyperoxaluria. J Am Soc Nephrol 26:2559–2570. https://doi.org/10.1681/ASN.2014070698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang W, Ge YCG, Ning C, Wang W, Du YD, Li JL, Tian YT (2020) Analysis of phenotype-genotype characteristics of monogenic kidney stone disease in children in mainland China. Eur Urol Open Sci 19(Suppl 2):e435

    Article  Google Scholar 

  9. Kopp N, Leumann E (1995) Changing pattern of primary hyperoxaluria in Switzerland. Nephrol Dial Transplant 10:2224–2227

    Article  CAS  Google Scholar 

  10. Cochat P, Deloraine A, Rotily M, Olive F, Liponski I, Deries N (1995) Epidemiology of primary hyperoxaluria type 1. Nephrol Dial Transplant 10:3–7

    Article  Google Scholar 

  11. Cochat P, Hulton SA, Acquaviva C, Danpure CJ, Daudon M, De Marchi M, Fargue S, Groothoff J, Harambat J, Hoppe B, Jamieson NV, Kemper MJ, Mandrile G, Marangella M, Picca S, Rumsby G, Salido E, Straub M, van Woerden CS (2012) Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant 27:1729–1736

    Article  CAS  Google Scholar 

  12. Milliner DS (2005) The primary hyperoxalurias: an algorithm for diagnosis. Am J Nephrol 25:154–160

    Article  Google Scholar 

  13. Jacob DE, Grohe B, Geßner M, Beck BB, Hoppe B (2013) Kidney stones in primary hyperoxaluria: new lessons learnt. PLoS One 8:e70617

    Article  CAS  Google Scholar 

  14. Rinat C, Wanders RJ, Drukker A, Halle D, Frishberg Y (1999) Primary hyperoxaluria type I: a model for multiple mutations in a monogenic disease within a distinct ethnic group. J Am Soc Nephrol 10:2352–2358

    Article  CAS  Google Scholar 

  15. Hoyer-Kuhn H, Kohbrok S, Volland R, Franklin J, Hero B, Beck BB, Hoppe B (2014) Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol 9:468–477

    Article  Google Scholar 

  16. Schaumburg H, Kaplan J, Windebank A, Vick N, Rasmus S, Pleasure D, Brown MJ (1983) Sensory neuropathy from pyridoxine abuse. A new megavitamin syndrome. N Engl J Med 309:445–448

    Article  CAS  Google Scholar 

  17. Sikora P, von Unruh GE, Beck B, Feldkötter M, Zajaczkowska M, Hesse A, Hoppe B (2008) [13C2]oxalate absorption in children with idiopathic calcium oxalate urolithiasis or primary hyperoxaluria. Kidney Int 73:1181–1186

    Article  CAS  Google Scholar 

  18. Al-Abadi E, Hulton SA (2013) Extracorporal shock wave lithotripsy in the management of stones in children with oxalosis-still the first choice? Pediatr Nephrol 28:1085–1089

    Article  Google Scholar 

  19. Xue YQ, He DL, Chen XF, Li X, Zeng J, Wang XY (2009) Shock wave induced kidney injury promotes calcium oxalate deposition. J Urol 182:762–765

    Article  CAS  Google Scholar 

  20. Hoppe B, Graf D, Offner G, Latta K, Byrd DJ, Michalk D, Brodehl J (1996) Oxalate elimination via hemodialysis or peritoneal dialysis in children with chronic renal failure. Pediatr Nephrol 10:488–492

    Article  CAS  Google Scholar 

  21. Illies F, Bonzel KE, Wingen AM, Latta K, Hoyer PF (2006) Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1. Kidney Int 70:1642–1648

    Article  CAS  Google Scholar 

  22. Jamieson NV, European PHI Transplantation Study Group (2005) A 20-year experience of combined liver/kidney transplantation for primary hyperoxaluria (PH1): the European PH1 transplant registry experience 1984–2004. Am J Nephrol 39:282–289

    Article  Google Scholar 

  23. Millan MT, Berquist WE, So SK, Sarwal MM, Wayman KI, Cox KL, Filler G, Salvatierra O Jr, Esquivel CO (2003) One hundred percent patient and kidney allograft survival with simultaneous liver and kidney transplantation in infants with primary hyperoxaluria: a single-center experience. Transplantation 76:1458–1463

    Article  Google Scholar 

  24. Watts RW, Calne RY, Williams R, Mansell MA, Veall N, Purkiss P, Rolles K (1985) Primary hyperoxaluria (type I): attempted treatment by combined hepatic and renal transplantation. Q J Med 57:697–703

    CAS  PubMed  Google Scholar 

  25. Cibrik DM, Kaplan B, Arndorfer JA, Meier-Kriesche HU (2002) Renal allograft survival in patients with oxalosis. Transplantation 74:707–710

    Article  CAS  Google Scholar 

  26. Bergstralh EJ, Monico CG, Lieske JC, Herges RM, Langman CB, Hoppe B, Milliner DS (2010) Transplantation outcomes in primary hyperoxaluria. Am J Transplant 10:2493–2501

    Article  CAS  Google Scholar 

  27. Kasiske BL, Zeier MG, Craig JC, Ekberg H, Garvey CA, Green MD, Jha V, Josephson MA, Kiberd BA, Kreis HA, McDonald RA, Newmann JM, Obrador GT, Chapman JR, Vincenti FG, Balk EM, Wagner M, Raman G, Earley A, Abariga S, Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group (2009) KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 9(Suppl 3):S1–155

  28. Ruder H, Otto G, Schutgens RB, Querfeld U, Wanders RJ, Herzog KH, Wölfel P, Pomer S, Schärer K, Rose GA (1990) Excessive urinary oxalate excretion after combined renal and hepatic transplantation for correction of hyperoxaluria type 1. Eur J Pediatr 150:56–58

    Article  CAS  Google Scholar 

  29. Nolkemper D, Kemper MJ, Burdelski M, Vaismann I, Rogiers X, Broelsch CE, Ganschow R, Müller-Wiefel DE (2000) Long-term results of pre-emptive liver transplantation in primary hyperoxaluria type 1. Pediatr Transplant 4:177–181

    Article  CAS  Google Scholar 

  30. Mor E, Nesher E, Ben-Ari Z, Weissman I, Shaharabani E, Eizner S, Solomonov E, Rahamimov R, Braun M (2013) Sequential liver and kidney transplantation from a single living donor in two young adults with primary hyperoxaluria type 1. Liver Transpl 19:646–648

    Article  Google Scholar 

  31. Lam CW, Yuen YP, Lai CK, Tong SF, Lau LK, Tong KL, Chan YW (2001) Novel mutation in the GRHPR gene in a Chinese patient with primary hyperoxaluria type 2 requiring renal transplantation from a living related donor. Am J Kidney Dis 38:1307–1310

    Article  CAS  Google Scholar 

  32. Hicks NR, Cranston DW, Charlton CA (1983) Fifteen-year follow-up of hyperoxaluria type II. N Engl J Med 309:796

    CAS  PubMed  Google Scholar 

  33. Dhondup T, Lorenz EC, Milliner DS, Lieske JC (2018) Combined liver-kidney transplantation for primary hyperoxaluria type 2: a case report. Am J Transplant 18:253–257. https://doi.org/10.1111/ajt.14418

    Article  CAS  PubMed  Google Scholar 

  34. Del Bello A, Cointault O, Delas A, Kamar N (2020) Primary hyperoxaluria type 2 successfully treated with combined liver-kidney transplantation after failure of isolated kidney transplantation. Am J Transplant 20:1752–1753. https://doi.org/10.1111/ajt.15829

    Article  CAS  PubMed  Google Scholar 

  35. Talati JJ, Hulton SA, Garrelfs SF, Aziz W, Rao S, Memon A, Nazir Z, Biyabani R, Qazi S, Azam I, Khan AH, Ahmed J, Jafri L, Zeeshan M (2018) Primary hyperoxaluria in populations of Pakistan origin: results from a literature review and two major registries. Urolithiasis 46:187–195

    Article  Google Scholar 

  36. Zlotogora J, Carmi R, Lev B, Shalev SA (2009) A targeted population carrier screening program for severe and frequent genetic diseases in Israel. Eur J Hum Genet 17:591–597. https://doi.org/10.1038/ejhg.2008.241

    Article  PubMed  Google Scholar 

  37. Danpure CJ, Jennings PR (1986) Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett 201:20–24

    Article  CAS  Google Scholar 

  38. Mandrile G, van Woerden CS, Berchialla P, Beck BB, Acquaviva Bourdain C, Hulton SA, Rumsby G, OxalEurope Consortium (2014) Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type. Kidney Int 86:1197–1204. https://doi.org/10.1038/ki.2014.222

    Article  CAS  PubMed  Google Scholar 

  39. Harambat J, Fargue S, Acquaviva C, Gagnadoux MF, Janssen F, Liutkus A, Mourani C, Macher MA, Abramowicz D, Legendre C, Durrbach A, Tsimaratos M, Nivet H, Girardin E, Schott AM, Rolland MO, Cochat P (2010) Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome. Kidney Int 77:443–449. https://doi.org/10.1038/ki.2009.435

    Article  CAS  PubMed  Google Scholar 

  40. Danpure CJ, Cooper PJ, Wise PJ, Jennings PR (1989) An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria. J Cell Biol 108:1345–1352

    Article  CAS  Google Scholar 

  41. Fargue S, Lewin J, Rumsby G, Danpure CJ (2013) Four of the most common mutations in primary hyperoxaluria type 1 unmask the cryptic mitochondrial targeting sequence of alanine:glyoxylate aminotransferase encoded by the polymorphic minor allele. J Biol Chem 288:2475–2484. https://doi.org/10.1074/jbc.M112.432617

    Article  CAS  PubMed  Google Scholar 

  42. Fernández-Higuero JÁ, Betancor-Fernández I, Mesa-Torres N, Muga A, Salido E, Pey AL (2019) Structural and functional insights on the roles of molecular chaperones in the mistargeting and aggregation phenotypes associated with primary hyperoxaluria type I. Adv Protein Chem Struct Biol 114:119–152. https://doi.org/10.1016/bs.apcsb.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  43. Rumsby G, Cregeen DP (1999) Identification and expression of a cDNA for human hydroxypyruvate/glyoxylate reductase. Biochim Biophys Acta 1446:383–388

    Article  CAS  Google Scholar 

  44. Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP (1999) The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet 8:2063–2069

    Article  CAS  Google Scholar 

  45. Mdluli K, Booth MP, Brady RL, Rumsby G (2005) A preliminary account of the properties of recombinant human glyoxylate reductase (GRHPR), LDHA and LDHB with glyoxylate, and their potential roles in its metabolism. Biochim Biophys Acta 1753:209–216

    Article  CAS  Google Scholar 

  46. Behnam JT, Williams EL, Brink S, Rumsby G, Danpure CJ (2006) Reconstruction of human hepatocyte glyoxylate metabolic pathways in stably transformed Chinese-hamster ovary cells. Biochem J 394:409–416

    Article  CAS  Google Scholar 

  47. Belostotsky R, Seboun E, Idelson GH, Milliner DS, Becker-Cohen R, Rinat C, Monico CG, Feinstein S, Ben-Shalom E, Magen D, Weissman I, Charon C, Frishberg Y (2010) Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet 87:392–399. https://doi.org/10.1016/j.ajhg.2010.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Riedel TJ, Johnson LC, Knight J, Hantgan RR, Holmes RP, Lowther WT (2011) Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria. PLoS One 6:e26021. https://doi.org/10.1371/journal.pone.0026021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang A, Burke J, Bunker RD, Mok YF, Griffin MD, Baker EN, Loomes KM (2019) Regulation of human 4-hydroxy-2-oxoglutarate aldolase by pyruvate and α-ketoglutarate: implications for primary hyperoxaluria type-3. Biochem J 476:3369-3383. https://doi.org/10.1042/BCJ20190548

    Article  CAS  PubMed  Google Scholar 

  50. MacDonald JR, Huang AD, Loomes KM (2016) Cellular degradation of 4-hydroxy-2-oxoglutarate aldolase leads to absolute deficiency in primary hyperoxaluria type 3. FEBS Lett 590:1467–1476. https://doi.org/10.1002/1873-3468.12181

    Article  CAS  PubMed  Google Scholar 

  51. Riedel TJ, Knight J, Murray MS, Milliner DS, Holmes RP, Lowther WT (2012) 4-Hydroxy-2-oxoglutarate aldolase inactivity in primary hyperoxaluria type 3 and glyoxylate reductase inhibition. Biochim Biophys Acta 1822:1544–1552. https://doi.org/10.1016/j.bbadis.2012.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Williams EL, Bockenhauer D, van’t Hoff WG, Johri N, Laing C, Sinha MD, Unwin R, Viljoen A, Rumsby G (2012) The enzyme 4-hydroxy-2-oxoglutarate aldolase is deficient in primary hyperoxaluria type 3. Nephrol Dial Transplant 27:3191–3195. https://doi.org/10.1093/ndt/gfs039

    Article  CAS  PubMed  Google Scholar 

  53. Belostotsky R, Pitt JJ, Frishberg Y (2012) Primary hyperoxaluria type III--a model for studying perturbations in glyoxylate metabolism. J Mol Med (Berl) 90:1497–1504. https://doi.org/10.1007/s00109-012-0930-z

    Article  CAS  Google Scholar 

  54. Monico CG, Rossetti S, Belostotsky R, Cogal AG, Herges RM, Seide BM, Olson JB, Bergstrahl EJ, Williams HJ, Haley WE, Frishberg Y, Milliner DS (2011) Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol 6:2289–2295. https://doi.org/10.2215/CJN.02760311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weigert A, Martin-Higueras C, Hoppe B (2018) Novel therapeutic approaches in primary hyperoxaluria. Expert Opin Emerg Drugs 23:349–357. https://doi.org/10.1080/14728214.2018.1552940

    Article  CAS  PubMed  Google Scholar 

  56. Martin-Higueras C, Torres A, Salido E (2017) Molecular therapy of primary hyperoxaluria. J Inherit Metab Dis 40:481–489. https://doi.org/10.1007/s10545-017-0045-3

    Article  PubMed  Google Scholar 

  57. Dindo M, Conter C, Oppici E, Ceccarelli V, Marinucci L, Cellini B (2019) Molecular basis of primary hyperoxaluria: clues to innovative treatments. Urolithiasis 47:67–78. https://doi.org/10.1007/s00240-018-1089-z

    Article  CAS  PubMed  Google Scholar 

  58. Kukreja A, Lasaro M, Cobaugh C, Forbes C, Tang JP, Gao X, Martin-Higueras C, Pey AL, Salido E, Sobolov S, Subramanian RR (2019) Systemic alanine glyoxylate aminotransferase mRNA improves glyoxylate metabolism in a mouse model of primary hyperoxaluria type 1. Nucleic Acid Ther 29:104–113. https://doi.org/10.1089/nat.2018.0740

    Article  CAS  PubMed  Google Scholar 

  59. Frishberg Y, Zeharia A, Lyakhovetsky R, Bargal R, Belostotsky R (2014) Mutations in HAO1 encoding glycolate oxidase cause isolated glycolic aciduria. J Med Genet 51:526–529. https://doi.org/10.1136/jmedgenet-2014-102529

    Article  CAS  PubMed  Google Scholar 

  60. McGregor TL, Hunt KA, Nioi P, Mason D, Ticau S, Pelosi M, Loken PR, Finer S, Griffiths CJ, MacArthur DG, Trembath RC, Oglesbee D, Lieske JC, Wright J, Erbe DV, van Heel DA (2019) Deep phenotyping of a healthy human HAO1 knockout informs therapeutic development for primary hyperoxaluria type 1. bioRxiv 524256. https://doi.org/10.1101/524256

  61. McGregor TL, Hunt KA, Yee E, Mason D, Nioi P, Ticau S, Pelosi M, Loken PR, Finer S, Lawlor DA, Fauman EB, Huang QQ, Griffiths CJ, MacArthur DG, Trembath RC, Oglesbee D, Lieske JC, Erbe DV, Wright J, van Heel DA (2020) Characterising a healthy adult with a rare HAO1 knockout to support a therapeutic strategy for primary hyperoxaluria. Elife 9:e54363. https://doi.org/10.7554/eLife.54363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Martin-Higueras C, Luis-Lima S, Salido E (2016) Glycolate oxidase is a safe and efficient target for substrate reduction therapy in a mouse model of primary hyperoxaluria type I. Mol Ther 24:719–725. https://doi.org/10.1038/mt.2015.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Clifford-Mobley O, Rumsby G, Kanodia S, Didi M, Holt R, Senniappan S (2017) Glycolate oxidase deficiency in a patient with congenital hyperinsulinism and unexplained hyperoxaluria. Pediatr Nephrol 32:2159–2163. https://doi.org/10.1007/s00467-017-3741-1

    Article  PubMed  Google Scholar 

  64. Stenberg K, Lindqvist Y (1997) Three-dimensional structures of glycolate oxidase with bound active-site inhibitors. Protein Sci 6:1009–1015

    Article  CAS  Google Scholar 

  65. Bourhis JM, Vignaud C, Pietrancosta N, Guéritte F, Guénard D, Lederer F, Lindqvist Y (2009) Structure of human glycolate oxidase in complex with the inhibitor 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:1246–1253. https://doi.org/10.1107/S1744309109041670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang M, Xu M, Long Y, Fargue S, Southall N, Hu X, McKew JC, Danpure CJ, Zheng W (2016) High throughput cell-based assay for identification of glycolate oxidase inhibitors as a potential treatment for primary hyperoxaluria type 1. Sci Rep 6:34060. https://doi.org/10.1038/srep34060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moya-Garzón MD, Martín Higueras C, Peñalver P, Romera M, Fernandes MX, Franco-Montalbán F, Gómez-Vidal JA, Salido E, Díaz-Gavilán M (2018) Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type 1. J Med Chem 61:7144–7167. https://doi.org/10.1021/acs.jmedchem.8b00399

    Article  CAS  PubMed  Google Scholar 

  68. Bobbin ML, Rossi JJ (2016) RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol 56:103–122. https://doi.org/10.1146/annurev-pharmtox-010715-103633

    Article  CAS  PubMed  Google Scholar 

  69. Dutta C, Avitahl-Curtis N, Pursell N, Larsson Cohen M, Holmes B, Diwanji R, Zhou W, Apponi L, Koser M, Ying B, Chen D, Shui X, Saxena U, Cyr WA, Shah A, Nazef N, Wang W, Abrams M, Dudek H, Salido E, Brown BD, Lai C (2016) Inhibition of glycolate oxidase with dicer-substrate siRNA reduces calcium oxalate deposition in a mouse model of primary hyperoxaluria type 1. Mol Ther 24:770–778. https://doi.org/10.1038/mt.2016.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liebow A, Li X, Racie T, Hettinger J, Bettencourt BR, Najafian N, Haslett P, Fitzgerald K, Holmes RP, Erbe D, Querbes W, Knight J (2017) An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary Hyperoxaluria. J Am Soc Nephrol 28:494–503. https://doi.org/10.1681/ASN.2016030338

    Article  CAS  PubMed  Google Scholar 

  71. Frishberg Y, Deschenes G, Cochat P, Magen D, Groothoff J, Hulton SA, Harambat J, Van’t Hoff W, Hoppe B, Lieske JC, McGregor TL, Tamimi N, Haslett P, Talamudupula S, Erbe DV, Milliner DS (2019) A safety and efficacy study of lumasiran, an investigational RNA interference (RNAi) therapeutic, in adult and pediatric patients with primary hyperoxaluria type 1. Eur Urol Suppl 18:e388–e389

    Article  Google Scholar 

  72. Zabaleta N, Barberia M, Martin-Higueras C, Zapata-Linares N, Betancor I, Rodriguez S, Martinez-Turrillas R, Torella L, Vales A, Olagüe C, Vilas-Zornoza A, Castro-Labrador L, Lara-Astiaso D, Prosper F, Salido E, Gonzalez-Aseguinolaza G, Rodriguez-Madoz JR (2018) CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I. Nat Commun 9:5454. https://doi.org/10.1038/s41467-018-07827-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Staufner C, Haack TB, Feyh P, Gramer G, Raga DE, Terrile C, Sauer S, Okun JG, Fang-Hoffmann J, Mayatepek E, Prokisch H, Hoffmann GF, Kölker S (2015) Genetic cause and prevalence of hydroxyprolinemia. J Inherit Metab Dis 39:625–632. https://doi.org/10.1007/s10545-016-9940-2

    Article  CAS  Google Scholar 

  74. Summitt CB, Johnson LC, Jönsson TJ, Parsonage D, Holmes RP, Lowther WT (2015) Proline dehydrogenase 2 (PRODH2) is a hydroxyproline dehydrogenase (HYPDH) and molecular target for treating primary hyperoxaluria. Biochem J 466:273–281. https://doi.org/10.1042/BJ20141159

    Article  CAS  PubMed  Google Scholar 

  75. Buchalski B, Wood KD, Challa A, Fargue S, Holmes RP, Lowther WT, Knight J (1866) The effects of the inactivation of hydroxyproline dehydrogenase on urinary oxalate and glycolate excretion in mouse models of primary hyperoxaluria. Biochim Biophys Acta Mol basis Dis 2020:165633. https://doi.org/10.1016/j.bbadis.2019.165633

    Article  CAS  Google Scholar 

  76. Li X, Knight J, Fargue S, Buchalski B, Guan Z, Inscho EW, Liebow A, Fitzgerald K, Querbes W, Todd Lowther W, Holmes RP (2016) Metabolism of (13)C5-hydroxyproline in mouse models of primary hyperoxaluria and its inhibition by RNAi therapeutics targeting liver glycolate oxidase and hydroxyproline dehydrogenase. Biochim Biophys Acta 1862:233–239. https://doi.org/10.1016/j.bbadis.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  77. Lai C, Pursell N, Gierut J, Saxena U, Zhou W, Dills M, Diwanji R, Dutta C, Koser M, Nazef N, Storr R, Kim B, Martin-Higueras C, Salido E, Wang W, Abrams M, Dudek H, Brown BD (2018) Specific inhibition of hepatic lactate dehydrogenase reduces oxalate production in mouse models of primary hyperoxaluria. Mol Ther 26:1983–1995. https://doi.org/10.1016/j.ymthe.2018.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tsujino S, Shanske S, Brownell AK, Haller RG, DiMauro S (1994) Molecular genetic studies of muscle lactate dehydrogenase deficiency in white patients. Ann Neurol 36:661–665

    Article  CAS  Google Scholar 

  79. Le Dudal M, Huguet L, Perez J, Vandermeersch S, Bouderlique E, Tang E, Martori C, Chemaly N, Nabbout R, Haymann JP, Frochot V, Baud L, Deschênes G, Daudon M, Letavernier E (2019) Stiripentol protects against calcium oxalate nephrolithiasis and ethylene glycol poisoning. J Clin Invest 129:2571–2577

    Article  Google Scholar 

  80. Kempf C, Pfau A, Holle J, Müller-Schlüter K, Bufler P, Knauf F, Müller D (2020) Stiripentol fails to lower plasma oxalate in a dialysis-dependent PH1 patient. Pediatr Nephrol 35:1787–1789. https://doi.org/10.1007/s00467-020-04585-5

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hoppe B, Cochat P, Lipkin G, Gentile AM, Brown BD, Rosskamp R, Hulton S, Groothoff JW, Baum MA (2018) J Am Soc Nephrol 29:B10–B11 https://investors.dicerna.com/news-releases/news-release-details/dicernatm-presents-additional-data-phyoxtm1-study-dcr-phxc

  82. Wood KD, Holmes RP, Erbe D, Liebow A, Fargue S, Knight J (2019) Reduction in urinary oxalate excretion in mouse models of primary hyperoxaluria by RNA interference inhibition of liver lactate dehydrogenase activity. Biochim Biophys Acta Mol basis Dis 1865:2203–2209. https://doi.org/10.1016/j.bbadis.2019.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Salido E, Rodriguez-Pena M, Santana A, Beattie SG, Petry H, Torres A (2011) Phenotypic correction of a mouse model for primary hyperoxaluria withadeno-associated virus gene transfer. Mol Ther 19:870–875. https://doi.org/10.1038/mt.2010.270

    Article  CAS  PubMed  Google Scholar 

  84. Estève J, Blouin JM, Lalanne M, Azzi-Martin L, Dubus P, Bidet A, Harambat J, Llanas B, Moranvillier I, Bedel A, Moreau-Gaudry F, Richard E (2019) Targeted gene therapy in human-induced pluripotent stem cells from a patient with primary hyperoxaluria type 1 using CRISPR/Cas9 technology. Biochem Biophys Res Commun 517:677–683. https://doi.org/10.1016/j.bbrc.2019.07.109

    Article  CAS  PubMed  Google Scholar 

  85. Estève J, Blouin JM, Lalanne M, Azzi-Martin L, Dubus P, Bidet A, Harambat J, Llanas B, Moranvillier I, Bedel A, Moreau-Gaudry F, Richard E (2019) Generation of induced pluripotent stem cells-derived hepatocyte-like cells for ex vivo gene therapy of primary hyperoxaluria type 1. Stem Cell Res 38:101467. https://doi.org/10.1016/j.scr.2019.101467

    Article  CAS  PubMed  Google Scholar 

  86. Jiang J, Salido EC, Guha C, Wang X, Moitra R, Liu L, Roy-Chowdhury J, Roy-Chowdhury N (2008) Correction of hyperoxaluria by liver repopulation with hepatocytes in a mouse model of primary hyperoxaluria type-1. Transplantation 85:1253–1260. https://doi.org/10.1097/TP.0b013e31816de49e

    Article  CAS  PubMed  Google Scholar 

  87. Roncador A, Oppici E, Talelli M, Pariente AN, Donini M, Dusi S, Voltattorni CB, Vicent MJ, Cellini B (2017) Use of polymer conjugates for the intraperoxisomal delivery of engineered human alanine:glyoxylate aminotransferase as a protein therapy for primary hyperoxaluria type I. Nanomedicine 13:897–907. https://doi.org/10.1016/j.nano.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  88. Miyata N, Steffen J, Johnson ME, Fargue S, Danpure CJ, Koehler CM (2014) Pharmacologic rescue of an enzyme trafficking defect in primary hyperoxaluria 1. Proc Natl Acad Sci U S A 111:14406–14411. https://doi.org/10.1073/pnas.1408401111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Belostotsky R, Lyakhovetsky R, Sherman MY, Shkedy F, Tzvi-Behr S, Bar R, Hoppe B, Reusch B, Beck BB, Frishberg Y (2018) Translation inhibition corrects aberrant localization of mutant alanine-glyoxylate aminotransferase: possible therapeutic approach for hyperoxaluria. J Mol Med (Berl) 96:621–630. https://doi.org/10.1007/s00109-018-1651-8

    Article  Google Scholar 

  90. Hou S, Madoux F, Scampavia L, Janovick JA, Conn PM, Spicer TP (2017) Drug library screening for the identification of ionophores that correct the mistrafficking disorder associated with oxalosis kidney disease. SLAS Discov 22:887–896. https://doi.org/10.1177/2472555217689992

    Article  CAS  PubMed  Google Scholar 

  91. Ermer T, Eckardt KU, Aronson PS, Knauf F (2016) Oxalate, inflammasome, and progression of kidney disease. Curr Opin Nephrol Hypertens 25:363–371. https://doi.org/10.1097/MNH.0000000000000229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Anders HJ, Suarez-Alvarez B, Grigorescu M, Foresto-Neto O, Steiger S, Desai J, Marschner JA, Honarpisheh M, Shi C, Jordan J, Müller L, Burzlaff N, Bäuerle T, Mulay SR (2018) The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1-mediated tissue injury. Kidney Int 93:656–669. https://doi.org/10.1016/j.kint.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  93. Komada T, Muruve DA (2019) The role of inflammasomes in kidney disease. Nat Rev Nephrol 15:501–520. https://doi.org/10.1038/s41581-019-0158-z

    Article  PubMed  Google Scholar 

  94. Taguchi K, Okada A, Kitamura H, Yasui T, Naiki T, Hamamoto S, Ando R, Mizuno K, Kawai N, Tozawa K, Asano K, Tanaka M, Miyoshi I, Kohri K (2014) Colony-stimulating factor-1 signaling suppresses renal crystal formation. J Am Soc Nephrol 25:1680–1697. https://doi.org/10.1681/ASN.2013060675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, Flavell RA, Aronson PS (2013) NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int 84:895–901. https://doi.org/10.1038/ki.2013.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mulay SR, Eberhard JN, Desai J, Marschner JA, Kumar SV, Weidenbusch M, Grigorescu M, Lech M, Eltrich N, Müller L, Hans W, Hrabě de Angelis M, Vielhauer V, Hoppe B, Asplin J, Burzlaff N, Herrmann M, Evan A, Anders HJ (2017) Hyperoxaluria requires TNF receptors to initiate crystal adhesion and kidney stone disease. J Am Soc Nephrol 28:761–768. https://doi.org/10.1681/ASN.2016040486

    Article  CAS  PubMed  Google Scholar 

  97. Zahid A, Li B, Kombe AJK, Jin T, Tao J (2019) Pharmacological inhibitors of the NLRP3 inflammasome. Front Immunol 10:2538. https://doi.org/10.3389/fimmu.2019.02538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Martin-Higueras C, Ludwig-Portugall I, Hoppe B, Kurts C (2019) Targeting kidney inflammation as a new therapy for primary hyperoxaluria? Nephrol Dial Transplant 34:908–914. https://doi.org/10.1093/ndt/gfy239

    Article  CAS  PubMed  Google Scholar 

  99. Marchetti C, Swartzwelter B, Gamboni F, Neff CP, Richter K, Azam T, Carta S, Tengesdal I, Nemkov T, D’Alessandro A, Henry C, Jones GS, Goodrich SA, St Laurent JP, Jones TM, Scribner CL, Barrow RB, Altman RD, Skouras DB, Gattorno M, Grau V, Janciauskiene S, Rubartelli A, Joosten LAB, Dinarello CA (2018) OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci U S A 115:E1530–E1539. https://doi.org/10.1073/pnas.1716095115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Klück V, Jansen T, Janssen M, Comarniceanu A, Efdé M, Tengesdal IW, Schraa K, Cleophas MCP, Scribner CL, Skouras DB, Marchetti C, Dinarello CA, Joosten LAB (2020) Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol 2:e270–e280. https://doi.org/10.1016/s2665-9913(20)30065-5

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kletzmayr A, Mulay SR, Motrapu M, Luo Z, Anders HJ, Ivarsson ME, Leroux JC (2020) Inhibitors of calcium oxalate crystallization for the treatment of oxalate nephropathies. Adv Sci (Weinh) 7:1903337. https://doi.org/10.1002/advs.201903337

    Article  CAS  Google Scholar 

  102. Kumar V, Irfan M, Datta A (2019) Manipulation of oxalate metabolism in plants for improving food quality and productivity. Phytochemistry 158:103–109. https://doi.org/10.1016/j.phytochem.2018.10.029

    Article  CAS  PubMed  Google Scholar 

  103. Milliner D, Hoppe B, Groothoff J (2018) A randomised phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 46:313–323. https://doi.org/10.1007/s00240-017-0998-693a

    Article  CAS  PubMed  Google Scholar 

  104. Pape L, Ahlenstiel-Grunow T, Birtel J, Krohne TU, Hoppe B (2020) Oxalobacter formigenes treatment combined with intensive dialysis lowers plasma oxalate and halts disease progression in a patient with severe infantile oxalosis. Pediatr Nephrol 35:1121–1124. https://doi.org/10.1007/s00467-019-04463-9

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cowley H, Yan Q, Koetzner L, Dolan L, Nordwald E, Cowley AB (2017) In vitro and in vivo safety evaluation of Nephure™. Regul Toxicol Pharmacol 86:241–252. https://doi.org/10.1016/j.yrtph.2017.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Langman CB, Grujic D, Pease RM, Easter L, Nezzer J, Margolin A, Brettman L (2016) A double-blind, placebo controlled, randomized phase 1 cross-over study with ALLN-177, an orally administered oxalate degrading enzyme. Am J Nephrol 44:150–158. https://doi.org/10.1159/000448766

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaacov Frishberg.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belostotsky, R., Frishberg, Y. Novel therapeutic approaches for the primary hyperoxalurias. Pediatr Nephrol 36, 2593–2606 (2021). https://doi.org/10.1007/s00467-020-04817-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04817-8

Keywords

Navigation