Skip to main content
Log in

Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microalgae species including Chlamydomonas mexicana, Micractinium reisseri, Scenedesmus obliquus and Tribonema aequale were cultivated in batch cultures, and their biochemical composition was determined. C. mexicana showed the highest carbohydrate content of 52.6 % and was selected for further study. Sonication pretreatment under optimum conditions (at 40 kHz, 2.2 Kw, 50 °C for 15 min) released 74 ± 2.7 mg g−1 of total reducing sugars (TRS) of dry cell weight, while the combined sonication and enzymatic hydrolysis treatment enhanced the TRS yield by fourfold (280.5 ± 4.9 mg g−1). The optimal ratio of enzyme [E]:substrate [S] for maximum TRS yield was [1]:[5] at 50 °C and pH 5. Combined sonication and hydrolysis treatment released 7.3 % (27.1 ± 0.9 mg g−1) soluble protein of dry cell weight, and further fermentation of the dissolved carbohydrate fraction enhanced the soluble protein content up to 56 % (228.4 mg g−1) of total protein content. Scanning and transmission electron microscopic analyses indicated that microalgae cells were significantly disrupted by the combined sonication and enzyme hydrolysis treatment. This study indicates that pretreatment and subsequent fermentation of the microalgal biomass enhance the recovery of carbohydrates and proteins which can be used as feedstocks for generation of biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hernandez D, Riano B, Coca M, Garcia-Gonzalez MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945

    Article  CAS  Google Scholar 

  2. Scholz MJ, Riley MR, Cuello JL (2013) Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae. Biomass Bioenerg 48:59–65

    Article  CAS  Google Scholar 

  3. Kalyani D, Tiwari MK, Li J, Kim SC, Kalia VC, Kang YC (2015) A Highly Efficient Recombinant Laccase from the Yeast Yarrowia lipolytica and Its Application in the Hydrolysis of Biomass. PLoS One 10(3):e0120156

    Article  CAS  Google Scholar 

  4. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  5. Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662

    Article  CAS  Google Scholar 

  6. Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121

    Article  CAS  Google Scholar 

  7. Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials a review. BioResources 2(4):707–738

    CAS  Google Scholar 

  8. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  Google Scholar 

  9. Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production, using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  Google Scholar 

  10. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:75–77

    Article  CAS  Google Scholar 

  11. Kashaninejad M, Tabil LG (2011) Effect of microwave-chemical pre-treatment on compression characteristics of biomass grinds. Biosyst Eng 108:36–45

    Article  Google Scholar 

  12. Wang XQ, Zhang XW (2012) Optimal extraction and hydrolysis of Chlorella pyrenoidosa proteins. Bioresour Technol 126:307–313

    Article  CAS  Google Scholar 

  13. Hernandez D, Solana M, Riano B, Garcia-Gonzalez MC, Bertucco A (2014) Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour Technol 170:370–378

    Article  CAS  Google Scholar 

  14. Sulaiman AZ, Ajit A, Chisti Y (2013) Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose. Biotechnol Prog 29:1448–1457

    Article  CAS  Google Scholar 

  15. Jeon B-H, Choi JA, Kim HC, Hwang J-H, Abou-Shanab RAI, Dempsey BA, Regan JM, Kim JR (2013) Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation. Biotechnol Biofuels 6(37):1–9. doi:10.1186/1754-6834-6-37

    Google Scholar 

  16. Choi JA, Hwang JH, Dempsey BA, Abou-Shanab RAI, Min B, Song H, Lee DS, Kim JR, Cho Y, Hong S, Jeon B-H (2011) Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy Environ Sci 4:3513–3520

    Article  CAS  Google Scholar 

  17. Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer JP (2012) Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour Technol 110:610–616

    Article  CAS  Google Scholar 

  18. Bhatia L, Johri S, Ahmad R (2012) An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2:65–84

    Article  CAS  Google Scholar 

  19. Kalyani D, Lee KM, Kim TS, Li J, Dhiman SS, Kang YC, Lee JK (2013) Microbial consortia for saccharification of woody biomass and ethanol fermentation. Fuel 107:815–822

    Article  CAS  Google Scholar 

  20. Tan IS, Lee KT (2014) Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: an optimization study. Energy 78:53–62

    Article  CAS  Google Scholar 

  21. Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang YHP (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sust Energy Rev 15:4950–4962

    Article  CAS  Google Scholar 

  22. Fu CC, Hung TC, Chen JY, Su CH, Wu WT (2010) Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour Technol 101:8750–8754

    Article  CAS  Google Scholar 

  23. Singh S, Khanna S, Moholkar VS, Goyal A (2014) Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels. Appl Energy 129:195–206

    Article  CAS  Google Scholar 

  24. Harun R, Danquah MK (2011) Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem Eng J 168:1079–1084

    Article  CAS  Google Scholar 

  25. Jodayree S, Smith JC, Tsopmo A (2012) Use of carbohydrase to enhance protein extraction efficiency and antioxidative properties of oat bran protein hydrolysates. Food Res Int 46:69–75

    Article  CAS  Google Scholar 

  26. Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349

    Article  CAS  Google Scholar 

  27. Abou-Shanab RAI, Hwang JH, Cho Y, Min B, Jeon BH (2011) Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl Energy 88(10):3300–3306

    Article  CAS  Google Scholar 

  28. Kanz T, Bold HC (1969) Physiological studies, morphological and taxonomical investigation of Nostoc and Anabaena in culture. Publication No. 6924. University of Texas, Austin

  29. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  30. Ajisaka K, Fujimoto H, Miyasato M (1998) An alpha-L-fucosidase from Penicillium multicolor as a candidate enzyme for the synthesis of a (1->3)-linked fucosyl oligosaccharides by transglycosylation. Carbohyd Res 309:125–129

    Article  CAS  Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  32. Barbarino E, Lourenco SO (2005) An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 17:447–460

    Article  CAS  Google Scholar 

  33. Chow PS, Landhausser SM (2004) A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol 24:1129–1136

    Article  CAS  Google Scholar 

  34. Huo YX, Cho KM, Rivera JGL, Monte E, Shen CR, Yan YJ, Liao JC (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 29:346–U160

  35. Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320

    Article  CAS  Google Scholar 

  36. El-Mashad HM (2015) Biomethane and ethanol production potential of Spirulina platensis algae and enzymatically saccharified switchgrass. Biochem Eng J 93:119–127

    Article  CAS  Google Scholar 

  37. Ask M, Olofsson K, Di Felice T, Ruohonen L, Penttila M, Liden G, Olsson L (2012) Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem 47:1452–1459

    Article  CAS  Google Scholar 

  38. Chen R, Yue ZB, Deitz L, Liu Y, Mulbry W, Liao W (2012) Use of an algal hydrolysate to improve enzymatic hydrolysis of lignocellulose. Bioresour Technol 108:149–154

    Article  CAS  Google Scholar 

  39. Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156

    Article  CAS  Google Scholar 

  40. Rosgaard L, Andric P, Dam-Johansen K, Pedersen S, Meyer AS (2007) Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Appl Biochem Biotech 143:27–40

    Article  CAS  Google Scholar 

  41. Ingesson H, Zacchi G, Yang B, Esteghlalian AR, Saddler JN (2001) The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose. J Biotechnol 88:177–182

    Article  CAS  Google Scholar 

  42. Borines MG, de Leon RL, Cuello JL (2013) Bioethanol production from the macroalgae Sargassum spp. Bioresour Technol 138:22–29

    Article  CAS  Google Scholar 

  43. Shuler MLKF (2002) Bioprocess engineering, 2nd edn. Prentice Hall, NJ

    Google Scholar 

  44. Kim KH, Choi IS, Kim HM, Wi SG, Bae HJ (2014) Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour Technol 153:47–54

    Article  CAS  Google Scholar 

  45. Dumay J, Clement N, Morancais M, Fleurence J (2013) Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresour Technol 13:21–27

    Article  CAS  Google Scholar 

  46. Kermanshahi-Pour A, Sommer TJ, Anastas PT, Zimmerman JB (2014) Enzymatic and acid hydrolysis of Tetraselmis suecica for polysaccharide characterization. Bioresour Technol 173:415–421

    Article  CAS  Google Scholar 

  47. Trivedi N, Gupta V, Reddy CRK, Jha B (2013) Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour Technol 150:106–112

    Article  CAS  Google Scholar 

  48. Lee OK, Kim AL, Seong DH, Lee CG, Jung YT, Lee JW, Lee EY (2013) Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour Technol 132:197–201

    Article  CAS  Google Scholar 

  49. Woods L, Riccobono M, Mehan N, Hestekin J, Beitle R (2011) Synergistic effect of abrasive and sonication for release of carbohydrate and protein from algae. Sep Sci Technol 46:601–604

    Article  CAS  Google Scholar 

  50. Tang SH, Hettiarachchy NS, Shellhammer TH (2002) Protein extraction from heat-stabilized defatted rice bran. 1. Physical processing and enzyme treatments. J Agric Food Chem 50:7444–7448

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mid-career Researchers Program (the National Research Foundation of Korea, 2013069183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byong-Hun Jeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldalatony, M.M., Kabra, A.N., Hwang, JH. et al. Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins. Bioprocess Biosyst Eng 39, 95–103 (2016). https://doi.org/10.1007/s00449-015-1493-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1493-5

Keywords

Navigation