Skip to main content

Advertisement

Log in

Enzymatic Pretreatment of Microalgae: Cell Wall Disruption, Biomass Solubilisation and Methane Yield Increase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Anaerobic digestion of microalgal biomass for biogas production may be limited due to the cell wall resulting in an inefficient bioconversion. Enzymatic pretreatments are applied for inducing cell damage/lysis and organic matter solubilisation and this way increasing biogas production. We evaluated enzymatic pretreatments in different conditions for comparing in relation to cell wall rupture, increase of soluble material and increase in biogas production through anaerobic digestion performance in BMP assay. Chlorella sorokiniana cultures were subjected to three different enzymatic pretreatments, each under four different conditions of enzyme/substrate ratio, pH and application time. The results showed increases over 21% in biogas productions for all enzymatic pretreatments. Enzymatic pretreatment was effective at damaging microalgae cell wall, releasing organic compounds and increasing the rate and final methane yield in BMP tests. We observed a synergistic activity between the mixtures enzymes, which would depend on operational conditions used for each pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bohutskyi, P., & Bouwer, E. (2013). Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In W. J. Lee (Ed.), Adv. Biofuels Bioprod (pp. 873–975). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-3348-4_36.

    Chapter  Google Scholar 

  2. Zamalloa, C., Vulsteke, E., Albrecht, J., & Verstraete, W. (2011). The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresource Technology, 102(2), 1149–1158. https://doi.org/10.1016/j.biortech.2010.09.017.

    Article  CAS  PubMed  Google Scholar 

  3. Ward, A. J., Lewis, D. M., & Green, F. B. (2014). Anaerobic digestion of algae biomass: a review. Algal Research, 5, 204–214. https://doi.org/10.1016/j.algal.2014.02.001.

    Article  Google Scholar 

  4. González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Impact of microalgae characteristics on their conversion to biofuel. Part I: focus on cultivation and biofuel production. Biofuels, Bioprod. Biorefining., 6, 246–256. https://doi.org/10.1002/bbb.

    Article  Google Scholar 

  5. González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels, Bioprod. Biorefining, 6, 205–218. https://doi.org/10.1002/bbb.

    Article  Google Scholar 

  6. Angelidaki, I., & Batstone, D. J. (2010). Anaerobic digestion. In Solid Waste Technology and Management, 1(2), 583–600.

  7. Mendez, L., Mahdy, A., Timmers, R. A., Ballesteros, M., & González-Fernández, C. (2013). Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresource Technology, 149, 136–141. https://doi.org/10.1016/j.biortech.2013.08.136.

    Article  CAS  PubMed  Google Scholar 

  8. Passos, F., Uggetti, E., Carrère, H., & Ferrer, I. (2014). Pretreatment of microalgae to improve biogas production: a review. Bioresource Technology, 172, 403–412. https://doi.org/10.1016/j.biortech.2014.08.114.

    Article  CAS  PubMed  Google Scholar 

  9. Córdova, O., Santis, J., Ruiz-Fillipi, G., Zuñiga, M. E., Fermoso, F. G., & Chamy, R. (2018). Microalgae digestive pretreatment for increasing biogas production. Renewable and Sustainable Energy Reviews, 82, 2806–2813. https://doi.org/10.1016/j.rser.2017.10.005.

    Article  CAS  Google Scholar 

  10. Yin, L. J., Jiang, S. T., Pon, S. H., & Lin, H. H. (2010). Hydrolysis of chlorella by Cellulomonas sp. YJ5 cellulases and its biofunctional properties. Journal of Food Science, 75(9), H317–H323. https://doi.org/10.1111/j.1750-3841.2010.01867.x.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, C. Y., Der Bai, M., & Chang, J. S. (2013). Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria. Biochemical Engineering Journal, 81, 170–176. https://doi.org/10.1016/j.bej.2013.10.014.

    Article  CAS  Google Scholar 

  12. Muñoz, C., Hidalgo, C., Zapata, M., Jeison, D., Riquelme, C., & Rivas, M. (2014). Use of cellulolytic marine bacteria for enzymatic pretreatment in microalgal biogas production. Applied and Environmental Microbiology, 80(14), 4199–4206. https://doi.org/10.1128/AEM.00827-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yun, Y. M., Kim, D. H., Oh, Y. K., Shin, H. S., & Jung, K. W. (2014). Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production. Bioresource Technology, 159, 365–372. https://doi.org/10.1016/j.biortech.2014.02.129.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824. https://doi.org/10.1002/bit.20282.

    Article  CAS  PubMed  Google Scholar 

  15. Yang, B., Dai, Z., Ding, S.-Y., & Wyman, C. E. (2014). Enzymatic hydrolysis of cellulosic biomass. Biofuels., 2(4), 421–449. https://doi.org/10.4155/bfs.11.116.

    Article  CAS  Google Scholar 

  16. APHA-AWWA-WPCF, Standard methods for the examination of water and wastewater, (20th Ed.)Washingt. (1999).

    Google Scholar 

  17. Percival Zhang, Y. H., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 24(5), 452–481. https://doi.org/10.1016/j.biotechadv.2006.03.003.

    Article  CAS  PubMed  Google Scholar 

  18. Thomas, L., Joseph, A., & Gottumukkala, L. D. (2014). Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement. Bioresource Technology, 158, 343–350. https://doi.org/10.1016/j.biortech.2014.01.140.

    Article  CAS  PubMed  Google Scholar 

  19. Passos, F., Hom-Diaz, A., Blanquez, P., Vicent, T., & Ferrer, I. (2016). Improving biogas production from microalgae by enzymatic pretreatment. Bioresource Technology, 199, 347–351. https://doi.org/10.1016/j.biortech.2015.08.084.

    Article  CAS  PubMed  Google Scholar 

  20. Mahdy, A., Ballesteros, M., & González-Fernández, C. (2016). Enzymatic pretreatment of Chlorella vulgaris for biogas production: influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Bioresource Technology, 199, 319–325. https://doi.org/10.1016/j.biortech.2015.08.080.

    Article  CAS  PubMed  Google Scholar 

  21. He, S., Fan, X., Katukuri, N. R., Yuan, X., Wang, F., & Guo, R. B. (2016). Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment. Bioresource Technology, 204, 145–151. https://doi.org/10.1016/j.biortech.2015.12.073.

    Article  CAS  PubMed  Google Scholar 

  22. Córdova, O., Passos, F., & Chamy, R. (2018). Physical pretreatment methods for improving microalgae anaerobic biodegradability. Applied Biochemistry and Biotechnology, 185(1), 114–126. https://doi.org/10.1007/s12010-017-2646-6.

    Article  CAS  PubMed  Google Scholar 

  23. Sato, M., Murata, Y., Mizusawa, M., Iwahashi, H., & Oka, S. (2004). A simple and rapid dual-fluorescence viability assay for microalgae. Microbiology and Culture Collections, 20, 53–59 http://www.jscc-home.jp/journal/No20_2/No20_2_53.pdf.

    Google Scholar 

  24. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., & van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934. https://doi.org/10.2166/wst.2009.040.

    Article  CAS  PubMed  Google Scholar 

  25. Donoso-Bravo, A., Pérez-Elvira, S. I., & Fdz-Polanco, F. (2010). Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chemical Engineering Journal, 160(2), 607–614. https://doi.org/10.1016/j.cej.2010.03.082.

    Article  CAS  Google Scholar 

  26. Doncaster, C. P., & Davey, A. J. H. (2007). Analysis of variance and covariance: how to choose and construct models for the life sciences. https://doi.org/10.1017/CBO9780511611377.

    Book  Google Scholar 

  27. Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35(5), 377–391. https://doi.org/10.1007/s10295-008-0327-8.

    Article  CAS  Google Scholar 

  28. Moraïs, S., Barak, Y., Caspi, J., & Hadar, Y. (2010). Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio., 1, 3–10. https://doi.org/10.1128/mBio.00285-10.Editor.

    Article  Google Scholar 

  29. Gruber-Brunhumer, M. R., Jerney, J., Zohar, E., Nussbaumer, M., Hieger, C., Bochmann, G., Schagerl, M., Obbard, J. P., Fuchs, W., & Drosg, B. (2015). Acutodesmus obliquus as a benchmark strain for evaluating methane production from microalgae: influence of different storage and pretreatment methods on biogas yield. Algal Research, 12, 230–238. https://doi.org/10.1016/j.algal.2015.08.022.

    Article  Google Scholar 

  30. Ometto, F., Quiroga, G., Psenicka, P., Whitton, R., Jefferson, B., & Villa, R. (2014). Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65, 350–361. https://doi.org/10.1016/j.watres.2014.07.040.

    Article  CAS  PubMed  Google Scholar 

  31. Merino, S. T., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. Advances in Biochemical Engineering/Biotechnology, 108, 95–120. https://doi.org/10.1007/10_2007_066.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors want to thank Pontificia Universidad Católica de Valparaiso for the financial support. Olivia Córdova appreciates her scholarship funded by the CONICYT, Beca Nacional Doctorado, 21121012.

Author information

Authors and Affiliations

Authors

Contributions

OC conceived the study, designed, and performed the experiments, evaluated the data and drafted the manuscript. FP evaluated the data and drafted the manuscript. RC supervised the work and assisted in drafting the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Olivia Córdova.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova, O., Passos, F. & Chamy, R. Enzymatic Pretreatment of Microalgae: Cell Wall Disruption, Biomass Solubilisation and Methane Yield Increase. Appl Biochem Biotechnol 189, 787–797 (2019). https://doi.org/10.1007/s12010-019-03044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03044-8

Keywords

Navigation