Advertisement

Molecular Genetics and Genomics

, Volume 293, Issue 2, pp 557–568 | Cite as

Molecular insights into the non-recombining nature of the spinach male-determining region

  • Tomohiro Kudoh
  • Mitsuhiko Takahashi
  • Takayuki Osabe
  • Atsushi Toyoda
  • Hideki Hirakawa
  • Yutaka Suzuki
  • Nobuko Ohmido
  • Yasuyuki OnoderaEmail author
Original Article

Abstract

Spinach (Spinacia oleracea L.) is a dioecious plant with male heterogametic sex determination and homomorphic sex chromosomes (XY). The dioecism is utilized for producing commercial hybrid seeds, and hence understanding the molecular-genetic basis of the species’ sex determining locus is an important issue for spinach breeding. In this study, seven dominant DNA markers were shown to completely co-segregate with the male-determining gene in segregating spinach populations comprising > 1500 plants. In addition, these seven dominant DNA markers were completely associated with the male-determining gene in over 100 spinach germplasm accessions and cultivars. These observations suggest that, in spinach, a Y-chromosomal region around the male-determining locus does not (or almost not) recombine with a counterpart region on the X chromosome. Using five of the seven DNA markers, five bacterial artificial chromosome (BAC) clone contigs with a total length of approximately 690 kbp were constructed. Full sequencing of six representative BAC clones (total insert length 504 kbp) from the five contigs and a transcriptome analysis by RNA-seq revealed that the Y-chromosomal region around the male-determining locus contains large amounts of repetitive elements, suggesting that the region might be poor in gene content. Most of the repeats found in this region are novel Ty1-copia-like and its derivative elements that accumulate predominantly in heterochromatic regions. Our findings may provide valuable insight into spinach genome structure and clues for future research into the evolution of the sex determining locus.

Keywords

Spinach Dioecy Sex chromosomes LTR-retrotransposon 

Notes

Acknowledgements

The authors thank Tohoku Seed Co. Ltd. (Utsunomiya, Tochigi, Japan) very much for providing the spinach breeding lines used in this study. We appreciate the technical assistance provided by Mrs. H. Yokomoto. The work presented here was supported by the Interuniversity Bio-Backup Project (IBBP) as an application code (Hokkaido 0001). We used the DNA Sequencing Facility of Research Faculty of Agriculture, Hokkaido University.

Funding

This work was supported by the Japan Society for the Promotion of Science (Grants-in-Aid for Scientific Research (KAKENHI) Grant Numbers 26292001 and 16H06279), Ministry of Education, Culture, Sports, Science and Technology (KAKENHI Grant Number 221S0002), and the Takeda Science Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The BAC clone sequences (AP017636–AP017641) and the RNA-seq reads (DRA006107) generated during and/or analyzed during the current study are available in the DNA Data Bank of Japan (DDBJ). The primer sequences of the SP_0018 marker developed by Tohoku Seed Co., Ltd. is not publicly available because it remains a trade secret.

Supplementary material

438_2017_1405_MOESM1_ESM.pdf (4.5 mb)
Supplementary material 1 (PDF 4580 KB)

References

  1. Akamatsu T, Suzuki T, Uchimiya H (1998) Determination of male or female of spinach by using DNA marker. Japanese patent JP 1998052284Google Scholar
  2. Altschul SF, Madden TL, Schäer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bachtrog D (2013) Evolution of Sex Chromosomes. In: Losos J (ed) The Princeton guide to evolution. Princeton University Press, Princeton, pp 387–396Google Scholar
  4. Brandes A, HeslopHarrison J, Kamm A, Kubis S, Doudrick R, Schmidt T (1997) Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33:11–21CrossRefPubMedGoogle Scholar
  5. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden T (2009) BLAST plus: architecture and applications. Bmc Bioinformatics 10:421CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, Macas J, Vyskot B, Kejnovsky E (2008) Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res 16:961–976CrossRefPubMedGoogle Scholar
  7. Charlesworth D (2016) Plant sex chromosomes. Annu Rev Plant Biol 67:397–420CrossRefPubMedGoogle Scholar
  8. Charlesworth B, Charlesworth D (1978) Model for evolution of dioecy and gynodioecy. Am Nat 112:975–997CrossRefGoogle Scholar
  9. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220CrossRefPubMedGoogle Scholar
  10. Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549CrossRefPubMedGoogle Scholar
  11. Ellis JR, Janick J (1960) The chromosomes of Spinacia oleracea. Am J Bot 47:210–214CrossRefGoogle Scholar
  12. Fuentes-Bazan S, Mansion G, Borsch T (2012a) Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Mol Phylogenet Evol 62:359–374CrossRefPubMedGoogle Scholar
  13. Fuentes-Bazan S, Uotila P, Borsch T (2012b) A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 42:5–24CrossRefGoogle Scholar
  14. Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido N, Onodera Y (2015) Evidence for a common origin of homomorphic and heteromorphic sex chromosomes in distinct Spinacia species. G3 (Bethesda) 5:1663–1673CrossRefPubMedCentralGoogle Scholar
  15. Geraldes A, Hefer CA, Capron A, Kolosova N, Martinez-Nuñez F, Soolanayakanahally RY, Stanton B, Guy RD, Mansfield SD, Douglas CJ, Cronk QC (2015) Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol Ecol 24:3243–3256CrossRefPubMedGoogle Scholar
  16. Hammer K (2001) Chenopodiaceae, Spinacia oleracea L. In: Hanelt P, Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben Germany (eds) Mansfeld’s encyclopedia of agricultural and horticultural crops (except ornamentals), 1st English edn. Springer, Berlin, pp 249–251Google Scholar
  17. Heslop-Harrison J, Brandes A, Taketa S, Schmidt T, Vershinin A, Alkhimova E, Kamm A, Doudrick R, Schwarzacher T, Katsiotis A, Kubis S, Kumar A, Pearce S, Flavell A, Harrison G (1997) The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100:197–204CrossRefPubMedGoogle Scholar
  18. Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, Vyskot B (2006) An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma 115:376–382CrossRefPubMedGoogle Scholar
  19. Hobza R, Kubat Z, Cegan R, Jesionek W, Vyskot B, Kejnovsky E (2015) Impact of repetitive DNA on sex chromosome evolution in plants. Chromosome Res 23:561–570CrossRefPubMedGoogle Scholar
  20. Iizuka M, Janick J (1962) Cytogenetic analysis of sex determination in Spinacia oleracea. Genetics 47:1225–1241PubMedPubMedCentralGoogle Scholar
  21. Ito M, Ohmido N, Akiyama Y, Fukui K, Koba T (2000) Characterization of spinach chromosomes by condensation patterns and physical mapping of 5S and 45S rDNAs by FISH. J Am Soc Hortic Sci 125:59–62Google Scholar
  22. Janick J (1998) Hybrids in horticultural crops. In: Lamkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. Crop Science Society of America, Madison, pp 45–56Google Scholar
  23. Janick J, Stevenson E (1954) A genetic study of the heterogametic nature of the staminate plant in spinach. Proc Am Soc Hortic Sci 63:444–446Google Scholar
  24. Janick J, Stevenson E (1955) Genetics of the monoecious character in spinach. Genetics 40:429–437PubMedPubMedCentralGoogle Scholar
  25. Jukes T, Cantor C (1969) Evolution of protein molecules. In: Munro H (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132CrossRefGoogle Scholar
  26. Kadereit G, Mavrodiev E, Zacharias E, Sukhorukov A (2010) Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. Am J Bot 97:1664–1687CrossRefPubMedGoogle Scholar
  27. Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics 166:1437–1450CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kataoka R, Hara M, Kato S, Isobe S, Sato S, Tabata S, Ohmido N (2012) Integration of linkage and chromosome maps of red clover (Trifolium pratense L.). Cytogenet Genome Res 137:60–69CrossRefPubMedGoogle Scholar
  29. Katayama Y, Shida S (1956) Development of intersexual flowers and their location on the stalk in spinach. Jpn J Breed 6:19–22CrossRefGoogle Scholar
  30. Kumar A, Bennetzen J (1999) Plant retrotransposons. Annu Rev Genet 33:479–532CrossRefPubMedGoogle Scholar
  31. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  32. Kurtz S, Phillippy A, Delcher A, Smoot M, Shumway M, Antonescu C, Salzberg S (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352CrossRefPubMedGoogle Scholar
  34. Na JK, Wang J, Ming R (2014) Accumulation of interspersed and sex-specific repeats in the non-recombining region of papaya sex chromosomes. BMC Genom 15:335CrossRefGoogle Scholar
  35. Naeger J, Golenberg E (2016) Mode and tempo of sequence and floral evolution within the Anserineae. Plant Syst Evol 302:385–398CrossRefGoogle Scholar
  36. Onodera Y, Yamamoto PM, Kubo T, Tetsuo M (1999) Heterogeneity of the atp6 presequences in normal and different sources of male-sterile cytoplasms of sugar beet. J Plant Physiol 155:656–660CrossRefGoogle Scholar
  37. Onodera Y, Yonaha I, Niikura S, Yamazaki S, Mikami T (2008) Monoecy and gynomonoecy in Spinacia oleracea L.: morphological and genetic analyses. Sci Hortic 118:266–269CrossRefGoogle Scholar
  38. Onodera Y, Yonaha I, Masumo H, Tanaka A, Niikura S, Yamazaki S, Mikami T (2011) Mapping of the genes for dioecism and monoecism in Spinacia oleracea L.: evidence that both genes are closely linked. Plant Cell Rep 30:965–971CrossRefPubMedGoogle Scholar
  39. Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94CrossRefPubMedGoogle Scholar
  40. Picq S, Santoni S, Lacombe T, Latreille M, Weber A, Ardisson M, Ivorra S, Maghradze D, Arroyo-Garcia R, Chatelet P, This P, Terral JF, Bacilieri R (2014) A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol 14:229CrossRefPubMedPubMedCentralGoogle Scholar
  41. Renner S, Ricklefs R (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606CrossRefGoogle Scholar
  42. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rogers S, Bendich A (1987) Ribosomal-RNA genes in plants—variability in copy number and in the intergenic spacer. Plant Mol Biol 9:509–520CrossRefPubMedGoogle Scholar
  44. Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S (2000) Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44:723–732CrossRefPubMedGoogle Scholar
  45. Sassa H (2007) A technique to isolate DNA from woody and herbaceous plants by using a silica-based plasmid extraction column. Anal Biochem 363:166–167CrossRefPubMedGoogle Scholar
  46. Stanke M, Diekhans M, Baertsch R, Haussler D (2008) Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24:637–644CrossRefPubMedGoogle Scholar
  47. Takahata S, Yago T, Iwabuchi K, Hirakawa H, Suzuki Y, Onodera Y (2016) Comparison of spinach sex chromosomes with sugar beet autosomes reveals extensive synteny and low recombination at the male-determining locus. J Hered 107:679–685CrossRefPubMedGoogle Scholar
  48. Trapnell C, Pachter L, Salzberg S (2009) TopHat: discovering splice junctions with RNA-SEq. Bioinformatics 25:1105–1111CrossRefPubMedPubMedCentralGoogle Scholar
  49. VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, Aryal R, Gschwend AR, Wang J, Na JK, Huang L, Zhang L, Miao W, Gou J, Arro J, Guyot R, Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu Q, Ming R (2015) Origin and domestication of papaya Yh chromosome. Genome Res 25:524–533CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vyskot B, Hobza R (2015) The genomics of plant sex chromosomes. Plant Sci 236:126–135CrossRefPubMedGoogle Scholar
  51. Wang J, Na JK, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Pérez R, Feltus FA, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci USA 109:13710–13715CrossRefPubMedPubMedCentralGoogle Scholar
  52. Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. Adv Genet Incorp Mol Genet Med 9:217–281Google Scholar
  53. Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081CrossRefPubMedPubMedCentralGoogle Scholar
  54. Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35:W265–W268CrossRefPubMedPubMedCentralGoogle Scholar
  55. Xu C, Jiao C, Sun H, Cai X, Wang X, Ge C, Zheng Y, Liu W, Sun X, Xu Y, Deng J, Zhang Z, Huang S, Dai S, Mou B, Wang Q, Fei Z (2017) Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat Commun 8:15275CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yamamoto K, Oda Y, Haseda A, Fujito S, Mikami T, Onodera Y (2014) Molecular evidence that the genes for dioecism and monoecism in Spinacia oleracea L. are located at different loci in a chromosomal region. Heredity 112:317–324CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.The Research Faculty of AgricultureHokkaido UniversitySapporoJapan
  2. 2.Center for Information BiologyNational Institute of GeneticsMishimaJapan
  3. 3.The Department of Technology DevelopmentKazusa DNA Research InstituteKisarazuJapan
  4. 4.The Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  5. 5.Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan

Personalised recommendations