Advertisement

Planta

, Volume 238, Issue 3, pp 549–560 | Cite as

Histochemical study of trans-polyisoprene accumulation by spectral confocal laser scanning microscopy and a specific dye showing fluorescence solvatochromism in the rubber-producing plant, Eucommia ulmoides Oliver

  • Yoshihisa NakazawaEmail author
  • Tsuyoshi Takeda
  • Nobuaki Suzuki
  • Tatsushi Hayashi
  • Yoko Harada
  • Takeshi Bamba
  • Akio Kobayashi
Original Article

Abstract

A microscopic technique combining spectral confocal laser scanning microscopy with a lipophilic fluorescent dye, Nile red, which can emit trans-polyisoprene specific fluorescence, was developed, and unmixed images of synthesized trans-polyisoprene in situ in Eucommia ulmoides were successfully obtained. The images showed that trans-polyisoprene was initially synthesized as granules in non-articulated laticifers that changed shape to fibers during laticifer maturation. Non-articulated laticifers are developed from single laticiferous cells, which are differentiated from surrounding parenchyma cells in the cambium. Therefore, these observations suggested that trans-polyisoprene biosynthesis first started in laticifer cells as granules and then the granules accumulated and fused in the inner space of the laticifers over time. Finally, laticifers were filled with the synthesized trans-polyisoprene, which formed a fibrous structure fitting the laticifers shape. Both trans- and cis-polyisoprene are among the most important polymers naturally produced by plants, and this microscopic technique combined with histological study should provide useful information in the fields of plant histology, bioindustry and phytochemistry.

Keywords

Histochemical staining Latex Laticifer Nile red Unmixed image 

Abbreviations

SCLSM

Spectral confocal laser scanning microscopy

SEC

Size exclusion chromatography

Notes

Acknowledgments

This work was partially supported by the New Energy and Industrial Technology Development Organization (NEDO).

References

  1. Bamba T, Fukusaki E, Nakazawa Y, Kobayashi A (2002) In-situ chemical analyses of trans-polyisoprene by histochemical staining and fourier transform infrared microspectroscopy in a rubber-producing plant, Eucommia ulmoides Oliver. Planta 215:934–939PubMedCrossRefGoogle Scholar
  2. Bamba T, Murayoshi M, Gyoksen K, Nakazawa Y, Okumoto H, Katto H, Fukusaki E, Kobayashi A (2010) Contribution of mevalonate and methylerythritol phosphate pathways to polyisoprenoid biosynthesis in the rubber-producing plant Eucommia ulmoides Oliver. Z Naturforsch C 65:363–372PubMedGoogle Scholar
  3. Cornish K, Backhaus RA (1990) Rubber transferase activity in rubber particles of guayule. Phytochemistry 29:3809–3813CrossRefGoogle Scholar
  4. Cornish K, Wood DF, Windle JJ (1999) Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. Planta 210:85–96PubMedCrossRefGoogle Scholar
  5. Dennis MS, Light DR (1989) Rubber elongation factor from Hevea brasiliensis. Identification, characterization, and role in rubber biosynthesis. J Biol Chem 264:18608–18617PubMedGoogle Scholar
  6. Dussourd DE, Eisner T (1987) Vein-cutting behavior: insect counterploy to the latex defense of plants. Science 237:898–901PubMedCrossRefGoogle Scholar
  7. Enoki M, Doi Y, Iwata T (2003) Oxidative degradation of cis- and trans-1,4-polyisoprenes and vulcanized natural rubber with enzyme-mediator systems. Biomacromolecules 4:314–320PubMedCrossRefGoogle Scholar
  8. Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. John Wiley & Sons, HobokenCrossRefGoogle Scholar
  9. Fowler SD, Greenspan P (1985) Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. J Histochem Cytochem 33:833–836PubMedCrossRefGoogle Scholar
  10. Genicot G, Leroy JL, Soom AV, Donnay I (2005) The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 63:1181–1194PubMedCrossRefGoogle Scholar
  11. Gorenflo V, Steinbüchel A, Marose S, Rieseberg M, Scheper T (1999) Quantification of bacterial polyhydroxyalkanoic acids by Nile red staining. Appl Microbiol Biotechnol 51:765–772PubMedCrossRefGoogle Scholar
  12. Greenspan P, Fowler SD (1985) Spectrofluorometric studies of the lipid probe nile red. J Lipid Res 26:781–789PubMedGoogle Scholar
  13. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973PubMedCrossRefGoogle Scholar
  14. Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Plant Sci 13:631–639PubMedCrossRefGoogle Scholar
  15. Hanaichi T, Sato T, Iwamoto T, Malavasi-Yamashiro J, Hoshino M, Mizuno N (1986) A stable lead by modification of Sato’s method. J Electron Microsc 35:304–306Google Scholar
  16. Hendricks SB, Wildman SG, Jones EJ (1946) Differentiation of rubber and gutta hydrocarbons in plant materials. Rubber Chem Technol 19:501–509CrossRefGoogle Scholar
  17. Hillebrand A, Post JJ, Wurbs D, Wahler D, Lenders M, Krzyzanek V, Prüfer D, Gronover CS (2012) Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content in Taraxacum brevicorniculatum. PLoS One 7:e41874PubMedCrossRefGoogle Scholar
  18. Hu SY (1979) A contribution to our knowledge of tu-chung-Eucommia ulmoides. Am J Chin Med 7:5–37PubMedCrossRefGoogle Scholar
  19. Kent EG, Swinney FB (1966) Properties and application of trans-1,4-polyisoprene. Ind Eng Chem Prod Res Dev 5:134–138CrossRefGoogle Scholar
  20. Ko JH, Chow KS, Han KH (2003) Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Mol Biol 53:479–492PubMedCrossRefGoogle Scholar
  21. Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72:1510–1530PubMedCrossRefGoogle Scholar
  22. Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K (2004) Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37:370–378PubMedCrossRefGoogle Scholar
  23. Larson JM (2006) The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed. Cytometry A 69:825–834PubMedGoogle Scholar
  24. Lewinsohn TM (1991) The geographical distribution of plant latex. Chemoecology 2:64–68CrossRefGoogle Scholar
  25. Mooibroek H, Cornish K (2000) Alternative sources of natural rubber. Appl Microbiol Biotechnol 53:355–365PubMedCrossRefGoogle Scholar
  26. Nakazawa Y, Bamba T, Takeda T, Uefujil H, Harada Y, Li X, Chen R, Inoue S, Tutumi M, Shimizu T, Su YQ, Gyokusen K, Fukusaki E, Kobayashi A (2009) Production of Eucommia-rubber from Eucommia ulmoides Oliv. (Hardy Rubber Tree). Plant Biotechnol 26:71–79CrossRefGoogle Scholar
  27. Nawamawat K, Sakdapipanich JT, Ho CC, Ma Y, Song J, Vancso JG (2011) Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surf A 390:157–166CrossRefGoogle Scholar
  28. Pickard WF (2008) Laticifers and secretory ducts: two other tube systems in plants. New Phytol 177:877–888PubMedCrossRefGoogle Scholar
  29. Pinzon NM, Aukema KG, Gralnick JA, Wackett LP (2011) Nile red detection of bacterial hydrocarbons and ketones in a high-throughput format. mBio 2:e00109–e00111PubMedCrossRefGoogle Scholar
  30. Rose K, Steinbüchel A (2005) Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. Appl Environ Microbiol 71:2803–2812PubMedCrossRefGoogle Scholar
  31. Roth WB, Carr ME, Davis EA, Bagby MO (1985) New sources of gutta-percha in Garrya flavescens and G. wrightii. Phytochemistry 24:183–184CrossRefGoogle Scholar
  32. Sando T, Hayashi T, Takeda T, Akiyama Y, Nakazawa Y, Fukusaki E, Kobayashi A (2009) Histochemical study of detailed laticifer structure and rubber biosynthesis-related protein localization in Hevea brasiliensis using spectral confocal laser scanning microscopy. Planta 230:215–225PubMedCrossRefGoogle Scholar
  33. Sato H, Tanaka Y (1979) 1H-NMR study of polyisoprenes. J Polym Sci Polym Chem Ed 17:3551–3558CrossRefGoogle Scholar
  34. Schlesinger W, Leeper HM (1951) Chicle cis- and trans-polyisoprenes from a single plant species. Ind Eng Chem 43:398–403CrossRefGoogle Scholar
  35. Schmidt T, Lenders M, Hillebrand A, van Deenen N, Munt O, Reichelt R, Eisenreich W, Fischer R, Prüfer D, Gronover CS (2010) Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz. BMC Biochem 11:11PubMedCrossRefGoogle Scholar
  36. Spanova M, Czabany T, Zellnig G, Leitner E, Hapala I, Daum G (2010) Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast Saccharomyces cerevisiae. J Biol Chem 285:6127–6133PubMedCrossRefGoogle Scholar
  37. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80PubMedCrossRefGoogle Scholar
  38. Suzuki N, Uefuji H, Nishikawa T, Mukai Y, Yamashita A, Hattori M, Ogasawara N, Bamba T, Fukusaki EI, Kobayashi A, Ogata Y, Sakurai N, Suzuki H, Shibata D, Nakazawa Y (2012) Construction and analysis of EST libraries of the trans-polyisoprene producing plant, Eucommia ulmoides Oliver. Planta 236:1405–1417PubMedCrossRefGoogle Scholar
  39. Tangpakdee J, Tanaka Y, Shiba KI, Kawahara S, Sakurai K, Suzuki Y (1997) Structure and biosynthesis of trans-polyisoprene from Eucommia ulmoides. Phytochemistry 45:75–80CrossRefGoogle Scholar
  40. van Beilen JB, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25:522–529PubMedCrossRefGoogle Scholar
  41. Wahler D, Colby T, Kowalski NA, Harzen A, Wotzka SY, Hillebrand A, Fischer R, Helsper J, Schmidt J, Schulze Gronover C, Prüfer D (2012) Proteomic analysis of latex from the rubber-producing plant Taraxacum brevicorniculatum. Proteomics 12:901–905PubMedCrossRefGoogle Scholar
  42. Weiss FE (1891) VIII. The caoutchouc-containing cells of Eucommia ulmoides Oliver. Transactions of the Linnean Society of London. 2nd Series: Botany 3:243–254Google Scholar
  43. Weiss TL, Chun HJ, Okada S, Vitha S, Holzenburg A, Laane J, Devarenne TP (2010) Raman spectroscopy analysis of botryococcene hydrocarbons from the green microalga Botryococcus braunii. J Biol Chem 285:32458–32466PubMedCrossRefGoogle Scholar
  44. Wimalaratna SD (1973) A staining procedure for latex vessels of Hevea. Stain Technol 48:219–221PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yoshihisa Nakazawa
    • 1
    Email author
  • Tsuyoshi Takeda
    • 1
  • Nobuaki Suzuki
    • 1
  • Tatsushi Hayashi
    • 1
  • Yoko Harada
    • 1
  • Takeshi Bamba
    • 1
  • Akio Kobayashi
    • 1
  1. 1.Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations