Skip to main content
Log in

Novel carbon nanoparticles derived from Bougainvillea modulate vegetative growth via auxin–cytokinin signaling in Arabidopsis

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

We present a green synthesis method of producing blue fluorescence emitting carbon nanoparticles (CNPs) through a simple and cost-effective single-step hydrothermal reaction. The synthesis utilized bract extracts and pollen grains from three Bougainvillea species: B. spectabilis, B. alba, and B. buttiana. The CNPs exhibited photoluminescence, with the highest emission observed in the ultraviolet region. Atomic force microscopy analysis revealed that the size of synthesized CNPs ranged from 23 to 83 nm. Fourier transform infrared analysis provided a comprehensive understanding of the CNP’s surface functional groups, with carbon being the predominant group. X-ray diffraction analysis confirmed the amorphous nature of the synthesized CNPs. Zeta potential measurements indicated that the particles carried a negative charge, suggesting their colloidal stability. In experiments conducted with Arabidopsis thaliana seedlings, CNPs derived from B. alba pollen grains (Ba-POL) were found to promote leaf area expansion while simultaneously inhibiting primary root growth. In presence of 10 nM IAA, Ba-POL CNP treated seedlings displayed a significant reduction in primary root growth. RT-PCR analysis revealed substantial changes in the expression of auxin response genes in presence of Ba-POL CNP. Cytokinin levels were enhanced in the seedlings in the presence of Ba-POL CNP, as revealed increased expression of cytokinin reporter TCS::GFP. Our findings underscore the potential application of these novel CNPs in modulation of plant growth through its effects on auxin–cytokinin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abarca-Vargas R, Petricevich VL (2018) Bougainvillea genus: a review on phytochemistry, pharmacology, and toxicology. Evid Based Complement Altern Med 2018:1–17

    Article  Google Scholar 

  • Athinarayanan J, Periasamy VS, Alshatwi AA (2022) Unveiling the biocompatible properties of date palm tree (Phoenix dactylifera L.) biomass-derived lignin nanoparticles. ACS Omega 7:19270–19279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MJ, Marchant A, Green HG et al (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    Article  CAS  PubMed  Google Scholar 

  • Campuzano S, Yáñez-Sedeño P, Pingarrón JM (2019) Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials 9:634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan P, Mahajan S, Kulshrestha A et al (2016) Bougainvillea spectabilis exhibits antihyperglycemic and antioxidant activities in experimental diabetes. J Evid Based Complement Altern Med 21:177–185

    Article  CAS  Google Scholar 

  • Cheng J, Zhang X, Ye Y (2006) Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes. J Solid State Chem 179:91–95

    Article  CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Singh U, Bindraban PS et al (2019) Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci Total Environ 688:926–934

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar NE, Saber WIA, Zweil AM, Bashir SI (2022) An innovative green synthesis approach of chitosan nanoparticles and their inhibitory activity against phytopathogenic Botrytis cinerea on strawberry leaves. Sci Rep 12:3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Shetehy M, Moradi A, Maceroni M et al (2021) Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nat Nanotechnol 16:344–353

    Article  CAS  PubMed  Google Scholar 

  • Ferrari E, Barbero F, Busquets-Fité M et al (2021) Growth-promoting gold nanoparticles decrease stress responses in Arabidopsis seedlings. Nanomaterials 11(12):3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gälweiler L, Guan C, Müller A et al (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  Google Scholar 

  • García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaur M, Misra C, Yadav AB, Swaroop S, Maolmhuaidh FÓ, Bechelany M, Barhoum A (2021) Biomedical applications of carbon nanomaterials: fullerenes, quantum dots, nanotubes, nanofibers, and graphene. Materials (basel) 14:5978

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Yadav P, Sankaranarayanan S, Bhatia D (2023) Plant derived nanomaterials for targeted biological applications and smart agriculture. ChemistrySelect 8(47):e202303495

    Article  CAS  Google Scholar 

  • Guerrero RV, Vargas RA, Petricevich VL (2017) Chemical compounds and biological activity of an extract from Bougainvillea x buttiana (var. rose) holttum and standl. Int J Pharm Pharm Sci 9:42–46

    Article  CAS  Google Scholar 

  • Guo Y, Zhao W (2020) Hydrothermal synthesis of highly fluorescent nitrogen-doped carbon quantum dots with good biocompatibility and the application for sensing ellagic acid. Spectrochim Acta A Mol Biomol Spectrosc 240:118580

    Article  CAS  PubMed  Google Scholar 

  • Holmes-Davis R, Tanaka CK, Vensel WH et al (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884

    Article  CAS  PubMed  Google Scholar 

  • Imin N, Kerim T, Weinman JJ, Rolfe BG (2001) Characterisation of rice anther proteins expressed at the young microspore stage. Proteomics 1:1149–1161

    Article  CAS  PubMed  Google Scholar 

  • Ivanchenko MG, Napsucialy-Mendivil S, Dubrovsky JG (2010) Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. Plant J 64:740–752

    Article  CAS  PubMed  Google Scholar 

  • Kavitha T, Kumar S (2018) Turning date palm fronds into biocompatible mesoporous fluorescent carbon dots. Sci Rep 8(1):16269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931

    Article  CAS  Google Scholar 

  • Kim S, Hwang SW, Kim MK et al (2012) Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano 6:8203–8208

    Article  CAS  PubMed  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC et al (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461–462:462–468

    Article  PubMed  Google Scholar 

  • Kumar A, Singh A, Panigrahy M et al (2018) Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep 37:901–912

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Smalle JA (2022) Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. Int J Mol Sci 23:1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landa P, Vankova R, Andrlova J et al (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241–242:55–62

    Article  PubMed  Google Scholar 

  • Lee DJ, Park JW, Lee HW et al (2009) Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. J Exp Bot 60:3935–3957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zheng Y, Zhang H et al (2016) Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS Appl Mater Interfaces 8:19939–19945

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xiao N, Gong N et al (2014) One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon N Y 68:258–264

    Article  CAS  Google Scholar 

  • Lu YC, Chen J, Wang AJ et al (2015) Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(ii) detection and bioimaging. J Mater Chem C Mater 3:73–78

    Article  CAS  Google Scholar 

  • Mohiuddin SMUG, Aydarous A, Alshahrie A et al (2022) Structural, morphological, and optical properties of carbon nanoparticles unsheathed from date palm fronds. RSC Adv 12:27411–27420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noir S, Bräutigam A, Colby T et al (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun 337:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Ogunwande IA, Avoseh ON, Olasunkanmi KN et al (2019) Chemical composition, anti-nociceptive and anti-inflammatory activities of essential oil of Bougainvillea glabra. J Ethnopharmacol 232:188–192

    Article  CAS  PubMed  Google Scholar 

  • Oh J-W, Chun SC, Chandrasekaran M (2019) Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy 9:21

    Article  CAS  Google Scholar 

  • Pan J, Zheng Z, Yang J et al (2017) A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots. Talanta 166:1–7

    Article  CAS  PubMed  Google Scholar 

  • Pandorf M, Pourzahedi L, Gilbertson L et al (2020) Graphite nanoparticle addition to fertilizers reduces nitrate leaching in growth of lettuce (Lactuca sativa). Environ Sci Nano 7:127–138

    Article  CAS  Google Scholar 

  • Paponov IA, Paponov M, Teale W et al (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 1:321–337

    Article  CAS  PubMed  Google Scholar 

  • Rauf MA, Oves M, Ur Rehman F et al (2019) Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomed Pharmacother 116:108983

    Article  Google Scholar 

  • Ray SC, Jana NR (2017) Different synthesis process of carbon nanomaterials for biological applications. In: Ray SC, Jana NR (eds) Carbon nanomaterials for biological and medical applications. Elsevier, Amsterdam, pp 1–41

  • Rubilar O, Rai M, Tortella G et al (2013) Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett 35:1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Sciortino A, Marino E, Bv D, Schall P, Cannas M, Messina F (2016) Solvatochromism unravels the emission mechanism of carbon nanodots. J Phys Chem Lett 7:3419–3423

    Article  CAS  PubMed  Google Scholar 

  • Sciortino A, Cayuela A, Soriano ML et al (2017) Different natures of surface electronic transitions of carbon nanoparticles. Phys Chem Chem Phys 19:22670–22677

    Article  CAS  PubMed  Google Scholar 

  • Sharma M (2010) Understanding the mechanism of toxicity of carbon nanoparticles in humans in the new millennium: a systemic review. Indian J Occup Environ Med 14:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Das J (2019) Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol 17:92

    Article  Google Scholar 

  • Sharma V, Singh SK, Mobin SM (2019) Bioinspired carbon dots: from rose bracts to tunable emissive nanodots. Nanoscale Adv 1:1290–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Gautam A, Kumar V, Guleria P (2021) In vitro exposure of magnesium oxide nanoparticles adversely affects the vegetative growth and biochemical parameters of black gram. Environ Nanotechnol Monit Manag 16:100483

    CAS  Google Scholar 

  • Shi L, Yang JH, Zeng HB et al (2016) Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale 8:14374–14378

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Tiwari S, Pandey J et al (2021) Role of nanoparticles in crop improvement and abiotic stress management. J Biotechnol 337:57–70

    Article  CAS  PubMed  Google Scholar 

  • Sundararajan B, Ranjitha Kumari BD (2017) Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol 43:187–196

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Xu Q, Li D, Wang J, Han R (2021) Carbon dots inhibit root growth by disrupting auxin biosynthesis and transport in Arabidopsis. Ecotoxicol Environ Saf 216:112168

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yuan Y, Liang G, Yu SH (2015) Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis. Adv Sci 2(4):1500002

    Article  Google Scholar 

  • Zhang Y, Liu X, Fan Y, Guo X, Zhou L, Lv Y, Lin J (2016) One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields. Nanoscale 8(33):15281–15287

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ke M, Qu Q et al (2018) Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut 239:689–697

    Article  CAS  PubMed  Google Scholar 

  • Zhao W-B, Liu K-K, Song S-Y et al (2019) Fluorescent nano-biomass dots: ultrasonic-assisted extraction and their application as nanoprobe for Fe3+ detection. Nanoscale Res Lett 14:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuverza-Mena N, Medina-Velo IA, Barrios AC et al (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts 17(10):1783–1793

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Indian Institute of Technology Gandhinagar for the internship opportunity for RB and the post-doctoral fellowship to NG. This work was supported by a DBT Ramalingaswamy Re-entry fellowship Grant and a start-up grant from the Indian Institute of Technology Gandhinagar to SS. We also thank Dr. Kalika Prasad (IISER Pune) for the TCS::GFP seeds.

Author information

Authors and Affiliations

Authors

Contributions

SS conceived and designed the research. RB synthesized and characterized the CNPs, and NG assisted in the characterization of CNPs. RB, SO, and CK performed experiments on the effect of CNPs on the leaf area and root growth in A. thaliana. RB and NG performed RT-PCR and root growth assay for Auxin. SG assisted in characterizing CNP-treated Plant growth assay confocal microscopy analysis. SS supervised the experiments. NG and SS analyzed the data. RB wrote the manuscript, and NG and SS proofread and edited the manuscript. JS and DB provided technical suggestions for experiments and shared reagents. All authors read, discussed, and approved the manuscript.

Corresponding author

Correspondence to Subramanian Sankaranarayanan.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barot, R.B., Gawande, N.D., Omprabha, S. et al. Novel carbon nanoparticles derived from Bougainvillea modulate vegetative growth via auxin–cytokinin signaling in Arabidopsis. Chem. Pap. (2024). https://doi.org/10.1007/s11696-024-03421-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11696-024-03421-6

Keywords

Navigation