Advertisement

Journal of Neurology

, Volume 265, Issue 10, pp 2182–2189 | Cite as

Relationship between episodic memory and volume of the brain regions of two functional cortical memory systems in multiple sclerosis

  • Yolanda Aladro
  • Laudino López-Alvarez
  • Jorge Mario Sánchez-Reyes
  • Juan Antonio Hernández-Tamames
  • Helena Melero
  • Sandra Rubio-Fernández
  • Israel Thuissard
  • Marta Cerezo-García
Original Communication

Abstract

Background/objective

Two functional networks are proposed as neuronal support for the complex processes of memory: the anterior temporal and the medial posterior systems. We examined the atrophy of hippocampus (HC) and of those areas constituting the two functional memory systems in multiple sclerosis (MS) patients with low disability.

Methods

Episodic memory (EM) was assessed in 88 relapsing MS patients and in 40 healthy controls using Wechsler Memory Scale III (Spanish adaptation). FreeSurfer software was used to calculate normalized volume of total cortex, grey matter, white matter, subcortical grey matter (thalamus and striatum), HC and both the anterior temporal (entorhinal, ventral temporopolar, lateral orbitofrontal, amygdala) and posterior medial systems (thalamus, parahippocampal, posterior cingulate, precuneus, lateral parietal and medial prefrontal). Linear regression analysis was used to identify predictors of memory performance.

Results

Total grey matter and cortex volumes correlated with all subtypes of EM, and the precuneus volume correlated with overall, immediate and delayed memories. Univariant regression analysis identified an association between the volumes of the posterior medial memory network regions and EM scores. The volume of the left precuneus area was the unique and independent predictor for all EM subtypes except for visual memory, for which left HC volume was also an independent predictor.

Conclusion

Left precuneus volume was the best predictor of memory in relapsing MS patients with low disability and mild deficits in EM.

Keywords

Multiple sclerosis Episodic memory Volumetric MRI Functional memory systems Precuneus Hippocampus 

Notes

Acknowledgements

The authors are grateful to MS patients and HC for their participation.

Funding

This research was supported by Novartis.

Compliance with ethical standards

Conflicts of interest

Authors declare not having conflicts of interest with respect to this work. We report all possible disclosures to be thorough. Y. A. had received speakers’ honoraria from Novartis, Biogen Idec, Teva and Merck Serono; serves as a consultant and scientific advisory board for some Pharmaceutical Industries (Teva, Novartis, Biogen Idec, Sanofi Genzyme and Merck Serono). M. C. received support to investigate from Novartis and Teva.

Ethical standard

All procedures performed in this study involving human participants were carried out respecting the principles established in the 1964 Helsinki Declaration and its later amendments, the requirements by the Spanish legislation on biomedical investigation and protection of personal data.

References

  1. 1.
    Amato MP, Zipoli V, Portaccio E (2008) Cognitive changes in multiple sclerosis. Expert Rev Neurother 8:1585–1596.  https://doi.org/10.1586/14737175.8.10.1585 CrossRefPubMedGoogle Scholar
  2. 2.
    Saenz A, Bakchine S, Jonin PY et al (2015) Multiple sclerosis and verbal episodic memory: critical review of cognitive processes and their assessment. Rev Neurol (Paris) 171:624–645CrossRefGoogle Scholar
  3. 3.
    Brissart H, Morele E, Baumann C et al (2012) Verbal episodic memory in 426 multiple sclerosis patients: impairment in encoding, retrieval or both? Neurol Sci 33:1117–1123.  https://doi.org/10.1007/s10072-011-0915 CrossRefPubMedGoogle Scholar
  4. 4.
    Travis SG, Huang Y, Fujiwara E et al (2014) High field structural MRI reveals specific episodic memory correlates in the subfields of the hippocampus. Neuropsychologia 53:233–245.  https://doi.org/10.1016/j.neuropsychologia.2013.11.016 CrossRefPubMedGoogle Scholar
  5. 5.
    Griffith HR, Pyzalski RW, Seidenberg M et al (2004) Memory relationships between MRI volumes and resting PET metabolism of medial temporal lobe structures. Epilepsy Behav 5:669–676CrossRefGoogle Scholar
  6. 6.
    Geurts JJ, Bö L, Roosendaal SD et al (2007) Extensive hippocampal demyelination in multiple sclerosis. J Neuropathol Exp Neurol 66:819–827CrossRefGoogle Scholar
  7. 7.
    Papadopoulos D, Dukes S, Patel R et al (2009) Substantial archaeocortical atrophy and neuronal loss in multiple sclerosis. Brain Pathol 19:238–253CrossRefGoogle Scholar
  8. 8.
    Geurts JJ, Pouwels PJ, Uitdehaag BM et al (2005) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion recovery MR imaging. Radiology 263:254–260CrossRefGoogle Scholar
  9. 9.
    Sicotte NL, Kern KC, Giesser BS et al (2008) Regional hippocampal atrophy in multiple sclerosis. Brain 131:1134–1141CrossRefGoogle Scholar
  10. 10.
    Benedict RH, Ramasamy D, Munschauer F et al (2009) Memory impairment in multiple sclerosis: correlation with deep grey matter and mesial temporal atrophy. J Neurol Neurosurg Psychiatry 80:201–206CrossRefGoogle Scholar
  11. 11.
    Longoni G, Rocca MA, Pagani E et al (2015) Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS. Brain Struct Funct 220:435–444CrossRefGoogle Scholar
  12. 12.
    González Torre JA, Cruz-Gómez ÁJ, Belenguer A et al (2017) Hippocampal dysfunction is associated with memory impairment in multiple sclerosis: a volumetric and functional connectivity study. Mult Scler 23:1854–1863.  https://doi.org/10.1177/1352458516688349 CrossRefPubMedGoogle Scholar
  13. 13.
    Ranganath C, Ritchey M (2012) Two cortical systems for memory-guided behavior. Nat Rev Neurosci 13:713–726.  https://doi.org/10.1038/nrn3338 CrossRefPubMedGoogle Scholar
  14. 14.
    Ritchey M, Libby LA, Ranganath C (2015) Cortico-hippocampal systems involved in memory and cognition: the PMAT framework. Prog Brain Res 219:45–64.  https://doi.org/10.1016/bs.pbr.2015.04.001 CrossRefPubMedGoogle Scholar
  15. 15.
    Sumowski JF, Leavitt VM, Rocca MA et al (2017) Mesial temporal lobe and subcortical grey matter volumes differentially predict memory across stages of multiple sclerosis. Mult Scler.  https://doi.org/10.1177/1352458517708873 CrossRefPubMedGoogle Scholar
  16. 16.
    Polman C, Reingold S, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302CrossRefGoogle Scholar
  17. 17.
    Wechsler D (2004) Wechsler Memory Scale, 3rd edn. TEA Ediciones, MadridGoogle Scholar
  18. 18.
    Schmidt P, Gaser C, Arsic M et al (2012) An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59:3774–3783CrossRefGoogle Scholar
  19. 19.
    Pareto D, Sastre-Garriga J, Aymerich FX et al (2016) Lesion filling effect in regional brain volume estimations: a study in multiple sclerosis patients with low lesion load. Neuroradiology 58:467.  https://doi.org/10.1007/s00234-016-1654-5 CrossRefPubMedGoogle Scholar
  20. 20.
    Valverde S, Oliver A, Roura E et al (2015) Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling. NeuroImage Clin 9:640–647.  https://doi.org/10.1016/j.nicl.2015.10.012 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Biberacher V, Schmidt P, Keshavan A et al (2016) Intra and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. NeuroImage 142:188–197.  https://doi.org/10.1016/j.neuroimage.2016.07.035 CrossRefPubMedGoogle Scholar
  22. 22.
    Magon S, Gaetano L, Chakravarty MM et al (2014) White matter lesion filling improves the accuracy of cortical thickness measurements in multiple sclerosis patients: a longitudinal study. BMC Neurosci 15:106.  https://doi.org/10.1186/1471-2202-15-106 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97:11050–11055CrossRefGoogle Scholar
  24. 24.
    Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583.  https://doi.org/10.1093/brain/aw1004 CrossRefPubMedGoogle Scholar
  25. 25.
    Utevsky AV, Smith DV, Huettel SA (2014) Precuneus is a functional core of the default-mode network. J Neurosci 34:932–940.  https://doi.org/10.1523/JNEUROSCI.4227-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schmidt D, Krause BJ, Mottaghy FM et al (2002) Brain systems engaged in encoding and retrieval of word-pair associates independent of their imagery content or presentation modalities. Neuropsychologia 40:457–470.  https://doi.org/10.1016/S0028-3932(01)00102-6 CrossRefPubMedGoogle Scholar
  27. 27.
    Henson RN, Rugg MD, Shallice T et al (1999) Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. J Neurosci 19:3962–3972CrossRefGoogle Scholar
  28. 28.
    Lundstrom BN, Ingvar M, Petersson KM (2005) The role of precuneus and left inferior frontal cortex during source memory episodic retrieval. Neuroimage 27:824–834.  https://doi.org/10.1016/j.neuroimage.2005.05.008 CrossRefPubMedGoogle Scholar
  29. 29.
    Peters J, Daum I, Gizewski E et al (2009) Associations evoked during memory encoding recruit the context-network. Hippocampus 19:141–151.  https://doi.org/10.1002/hipo.20490 CrossRefPubMedGoogle Scholar
  30. 30.
    Dörfel D, Werner A, Scheafer M et al (2009) Distinct brain networks in recognition memory share a defined region in the precuneus. Eur J Neurosci 30:1947–1959.  https://doi.org/10.1111/j.1460-9568.2009.06973.x CrossRefPubMedGoogle Scholar
  31. 31.
    Eustache F, Piolino P, Giffard B et al (2004) “In the course of time”: a PET study of the cerebral substrates of autobiographical amnesia in Alzheimer’s disease. Brain 127:1549–1560.  https://doi.org/10.1093/brain/awh166 CrossRefPubMedGoogle Scholar
  32. 32.
    Bailly M, Destrieux C, Hommet C et al (2015) Precuneus and cingulate cortex atrophy and hypometabolism in patients with Alzheimer’s disease and mild cognitive impairment: MRI and F-18-FDG PET quantitative analysis using freesurfer. Biomed Res Int.  https://doi.org/10.1155/2015/583931 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Klaassens BL, van Gerven JMA, van der Grond J et al (2017) Diminished posterior precuneus connectivity with the default mode network differentiates normal aging from Alzheimer’s disease. Front Aging Neurosci 9:97.  https://doi.org/10.3389/fnagi.2017.00097 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Freton M, Lemogne C, Bergouignan L et al (2014) The eye of the self: precuneus volume and visual perspective during autobiographical memory retrieval. Brain Struct Funct 219:959–968.  https://doi.org/10.1007/s00429-013-0546-2 CrossRefPubMedGoogle Scholar
  35. 35.
    Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yolanda Aladro
    • 1
  • Laudino López-Alvarez
    • 2
  • Jorge Mario Sánchez-Reyes
    • 3
  • Juan Antonio Hernández-Tamames
    • 4
  • Helena Melero
    • 5
  • Sandra Rubio-Fernández
    • 6
  • Israel Thuissard
    • 7
  • Marta Cerezo-García
    • 1
  1. 1.Multiple Sclerosis Unit, Department of NeurologyGetafe University Hospital, European University of MadridMadridSpain
  2. 2.Faculty of Psychology of the University of OviedoOviedoSpain
  3. 3.Department of RadiologyGetafe University Hospital, European University of MadridMadridSpain
  4. 4.Radiology and Nuclear Medicine DepartmentErasmus MCRotterdamThe Netherlands
  5. 5.Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO)Rey Juan Carlos UniversityMóstolesSpain
  6. 6.Faculty of Psychology of the Autonoma University of MadridMadridSpain
  7. 7.Department of StatisticEuropean University of MadridMadridSpain

Personalised recommendations