Journal of Neurology

, Volume 262, Issue 9, pp 2182–2194 | Cite as

Recent imaging advances in neurology

  • Lorenzo Rocchi
  • Flavia Niccolini
  • Marios Politis
Neurological Update


Over the recent years, the application of neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) has considerably advanced the understanding of complex neurological disorders. PET is a powerful molecular imaging tool, which investigates the distribution and binding of radiochemicals attached to biologically relevant molecules; as such, this technique is able to give information on biochemistry and metabolism of the brain in health and disease. MRI uses high intensity magnetic fields and radiofrequency pulses to provide structural and functional information on tissues and organs in intact or diseased individuals, including the evaluation of white matter integrity, grey matter thickness and brain perfusion. The aim of this article is to review the most recent advances in neuroimaging research in common neurological disorders such as movement disorders, dementia, epilepsy, traumatic brain injury and multiple sclerosis, and to evaluate their contribution in the diagnosis and management of patients.


Magnetic resonance imaging Positron emission tomography Movement disorders Dementia Epilepsy Traumatic brain injury Multiple sclerosis 



There is no funding related to this article. L.R. has been supported by the Edmond J. and Lily Safra Foundation. F.N. has been supported by the Parkinson’s UK. M.P. research has been supported by the Edmond J. Safra Foundation, Michael J. Fox Foundation, Parkinson’s UK, Imanova Ltd, and the National Institute for Health Research Biomedical Research Centre.

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Politis M, Piccini P (2012) Positron emission tomography imaging in neurological disorders. J Neurol 259:1769–1780. doi: 10.1007/s00415-012-6428-3 PubMedCrossRefGoogle Scholar
  2. 2.
    Loane C, Politis M (2011) Positron emission tomography neuroimaging in Parkinson’s disease. Am J Transl Res 3:323–341PubMedCentralPubMedGoogle Scholar
  3. 3.
    Politis M (2014) Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat Rev Neurol. doi: 10.1038/nrneurol.2014.205 PubMedGoogle Scholar
  4. 4.
    Niccolini F, Su P, Politis M (2014) Dopamine receptor mapping with PET imaging in Parkinson’s disease. J Neurol. doi: 10.1007/s00415-014-7302-2 PubMedGoogle Scholar
  5. 5.
    Hsiao I-T, Weng Y-H, Hsieh C-J et al (2014) Correlation of Parkinson disease severity and 18F-DTBZ positron emission tomography. JAMA Neurol 71:758–766. doi: 10.1001/jamaneurol.2014.290 PubMedCrossRefGoogle Scholar
  6. 6.
    Lin S-C, Lin K-J, Hsiao I-T et al (2014) In vivo detection of monoaminergic degeneration in early Parkinson disease by (18)F-9-fluoropropyl-(+)-dihydrotetrabenzazine PET. J Nucl Med 55:73–79. doi: 10.2967/jnumed.113.121897 PubMedCrossRefGoogle Scholar
  7. 7.
    Ogisu K, Kudo K, Sasaki M et al (2013) 3D neuromelanin-sensitive magnetic resonance imaging with semi-automated volume measurement of the substantia nigra pars compacta for diagnosis of Parkinson’s disease. Neuroradiology 55:719–724. doi: 10.1007/s00234-013-1171-8 PubMedCrossRefGoogle Scholar
  8. 8.
    Ohtsuka C, Sasaki M, Konno K et al (2014) Differentiation of early-stage parkinsonisms using neuromelanin-sensitive magnetic resonance imaging. Parkinsonism Relat Disord 20:755–760. doi: 10.1016/j.parkreldis.2014.04.005 PubMedCrossRefGoogle Scholar
  9. 9.
    Bunzeck N, Singh-Curry V, Eckart C et al (2013) Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson’s disease. Parkinsonism Relat Disord 19:1136–1142. doi: 10.1016/j.parkreldis.2013.08.011 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ulla M, Bonny JM, Ouchchane L et al (2013) Is R2* a new MRI biomarker for the progression of Parkinson’s disease? A longitudinal follow-up. PLoS One 8:e57904. doi: 10.1371/journal.pone.0057904 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Teune LK, Renken RJ, de Jong BM et al (2014) Parkinson’s disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging. Neuroimage Clin 5:240–244. doi: 10.1016/j.nicl.2014.06.007 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Scherfler C, Esterhammer R, Nocker M et al (2013) Correlation of dopaminergic terminal dysfunction and microstructural abnormalities of the basal ganglia and the olfactory tract in Parkinson’s disease. Brain 136:3028–3037. doi: 10.1093/brain/awt234 PubMedCrossRefGoogle Scholar
  13. 13.
    Lenfeldt N, Hansson W, Larsson A et al (2013) Diffusion tensor imaging and correlations to Parkinson rating scales. J Neurol 260:2823–2830. doi: 10.1007/s00415-013-7080-2 PubMedCrossRefGoogle Scholar
  14. 14.
    Ziegler E, Rouillard M, André E et al (2014) Mapping track density changes in nigrostriatal and extranigral pathways in Parkinson’s disease. Neuroimage 99:498–508. doi: 10.1016/j.neuroimage.2014.06.033 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Gaenslen A, Unmuth B, Godau J et al (2008) The specificity and sensitivity of transcranial ultrasound in the differential diagnosis of Parkinson’s disease: a prospective blinded study. Lancet Neurol 7:417–424. doi: 10.1016/S1474-4422(08)70067-X PubMedCrossRefGoogle Scholar
  16. 16.
    Berg D, Godau J, Walter U (2008) Transcranial sonography in movement disorders. Lancet Neurol 7:1044–1055. doi: 10.1016/S1474-4422(08)70239-4 PubMedCrossRefGoogle Scholar
  17. 17.
    Liu P, Li X, Li F-F et al (2014) The predictive value of transcranial sonography in clinically diagnosed patients with early stage Parkinson’s disease: comparison with DAT PET scans. Neurosci Lett 582:99–103. doi: 10.1016/j.neulet.2014.08.053 PubMedCrossRefGoogle Scholar
  18. 18.
    Bouwmans AEP, Vlaar AMM, Mess WH et al (2013) Specificity and sensitivity of transcranial sonography of the substantia nigra in the diagnosis of Parkinson’s disease: prospective cohort study in 196 patients. BMJ Open. doi: 10.1136/bmjopen-2013-002613 PubMedCentralPubMedGoogle Scholar
  19. 19.
    Sanzaro E, Iemolo F, Duro G, Malferrari G (2014) A new assessment tool for Parkinson disease: the nigral lesion load obtained by transcranial sonography. J Ultrasound Med 33:1635–1640. doi: 10.7863/ultra.33.9.1635 PubMedCrossRefGoogle Scholar
  20. 20.
    Winter Y, von Campenhausen S, Arend M et al (2011) Health-related quality of life and its determinants in Parkinson’s disease: results of an Italian cohort study. Parkinsonism Relat Disord 17:265–269. doi: 10.1016/j.parkreldis.2011.01.003 PubMedCrossRefGoogle Scholar
  21. 21.
    Petrou M, Bohnen NI, Müller MLTM et al (2012) Aβ-amyloid deposition in patients with Parkinson disease at risk for development of dementia. Neurology 79:1161–1167. doi: 10.1212/WNL.0b013e3182698d4a PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Gomperts SN, Locascio JJ, Rentz D et al (2013) Amyloid is linked to cognitive decline in patients with Parkinson disease without dementia. Neurology 80:85–91. doi: 10.1212/WNL.0b013e31827b1a07 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Niethammer M, Tang CC, Ma Y et al (2013) Parkinson’s disease cognitive network correlates with caudate dopamine. Neuroimage 78:204–209. doi: 10.1016/j.neuroimage.2013.03.070 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Politis M, Su P, Piccini P (2012) Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol 3:96. doi: 10.3389/fphar.2012.00096 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Ratchford JN, Endres CJ, Hammoud DA et al (2012) Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol 259:1199–1205. doi: 10.1007/s00415-011-6337-x PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Rissanen E, Tuisku J, Rokka J et al (2014) In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand 11C-PK11195. J Nucl Med 55:939–944. doi: 10.2967/jnumed.113.131698 PubMedCrossRefGoogle Scholar
  27. 27.
    Edison P, Ahmed I, Fan Z et al (2013) Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology 38:938–949. doi: 10.1038/npp.2012.255 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Fan Z, Aman Y, Ahmed I et al (2014) Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement. doi: 10.1016/j.jalz.2014.06.016 Google Scholar
  29. 29.
    Hong JY, Oh JS, Lee I et al (2014) Presynaptic dopamine depletion predicts levodopa-induced dyskinesia in de novo Parkinson disease. Neurology 82:1597–1604. doi: 10.1212/WNL.0000000000000385 PubMedCrossRefGoogle Scholar
  30. 30.
    Pagonabarraga J, Corcuera-Solano I, Vives-Gilabert Y et al (2013) Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson’s disease. PLoS One 8:e54980. doi: 10.1371/journal.pone.0054980 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Mak E, Su L, Williams GB, O’Brien JT (2014) Neuroimaging characteristics of dementia with Lewy bodies. Alzheimers Res Ther 6:18. doi: 10.1186/alzrt248 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Zarei M, Ibarretxe-Bilbao N, Compta Y et al (2013) Cortical thinning is associated with disease stages and dementia in Parkinson’s disease. J Neurol Neurosurg Psychiatr 84:875–881. doi: 10.1136/jnnp-2012-304126 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Pereira JB, Svenningsson P, Weintraub D et al (2014) Initial cognitive decline is associated with cortical thinning in early Parkinson disease. Neurology 82:2017–2025. doi: 10.1212/WNL.0000000000000483 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Morales DA, Vives-Gilabert Y, Gómez-Ansón B et al (2013) Predicting dementia development in Parkinson’s disease using Bayesian network classifiers. Psychiatry Res 213:92–98. doi: 10.1016/j.pscychresns.2012.06.001 PubMedCrossRefGoogle Scholar
  35. 35.
    Hanganu A, Bedetti C, Degroot C et al (2014) Mild cognitive impairment is linked with faster rate of cortical thinning in patients with Parkinson’s disease longitudinally. Brain 137:1120–1129. doi: 10.1093/brain/awu036 PubMedCrossRefGoogle Scholar
  36. 36.
    Kandiah N, Zainal NH, Narasimhalu K et al (2014) Hippocampal volume and white matter disease in the prediction of dementia in Parkinson’s disease. Parkinsonism Relat Disord. doi: 10.1016/j.parkreldis.2014.08.024 Google Scholar
  37. 37.
    Deng B, Zhang Y, Wang L et al (2013) Diffusion tensor imaging reveals white matter changes associated with cognitive status in patients with Parkinson’s disease. Am J Alzheimers Dis Other Demen 28:154–164. doi: 10.1177/1533317512470207 PubMedCrossRefGoogle Scholar
  38. 38.
    Agosta F, Canu E, Stefanova E et al (2014) Mild cognitive impairment in Parkinson’s disease is associated with a distributed pattern of brain white matter damage. Hum Brain Mapp 35:1921–1929. doi: 10.1002/hbm.22302 PubMedCrossRefGoogle Scholar
  39. 39.
    O’Sullivan SS, Wu K, Politis M et al (2011) Cue-induced striatal dopamine release in Parkinson’s disease-associated impulsive-compulsive behaviours. Brain 134:969–978. doi: 10.1093/brain/awr003 PubMedCrossRefGoogle Scholar
  40. 40.
    Politis M, Loane C, Wu K et al (2013) Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson’s disease. Brain 136:400–411. doi: 10.1093/brain/aws326 PubMedCrossRefGoogle Scholar
  41. 41.
    Bohnen NI, Frey KA, Studenski S et al (2013) Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology 81:1611–1616. doi: 10.1212/WNL.0b013e3182a9f558 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Bohnen NI, Jahn K (2013) Imaging: what can it tell us about parkinsonian gait? Mov Disord 28:1492–1500. doi: 10.1002/mds.25534 PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Bohnen NI, Frey KA, Studenski S et al (2014) Extra-nigral pathological conditions are common in Parkinson’s disease with freezing of gait: an in vivo positron emission tomography study. Mov Disord 29:1118–1124. doi: 10.1002/mds.25929 PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Müller MLTM, Frey KA, Petrou M et al (2013) β-Amyloid and postural instability and gait difficulty in Parkinson’s disease at risk for dementia. Mov Disord 28:296–301. doi: 10.1002/mds.25213 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Shine JM, Matar E, Ward PB et al (2013) Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 136:3671–3681. doi: 10.1093/brain/awt272 PubMedCrossRefGoogle Scholar
  46. 46.
    Fling BW, Cohen RG, Mancini M et al (2013) Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait. Brain 136:2405–2418. doi: 10.1093/brain/awt172 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Hong JY, Yun HJ, Sunwoo MK et al (2014) Cognitive and cortical thinning patterns of subjective cognitive decline in patients with and without Parkinson’s disease. Parkinsonism Relat Disord 20:999–1003. doi: 10.1016/j.parkreldis.2014.06.011 PubMedCrossRefGoogle Scholar
  48. 48.
    Herz DM, Haagensen BN, Christensen MS et al (2014) The acute brain response to levodopa heralds dyskinesias in Parkinson disease. Ann Neurol 75:829–836. doi: 10.1002/ana.24138 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Politis M, Niccolini F (2014) Serotonin in Parkinson’s disease. Behav Brain Res. doi: 10.1016/j.bbr.2014.07.037 PubMedGoogle Scholar
  50. 50.
    Politis M, Loane C (2011) Serotonergic dysfunction in Parkinson’s disease and its relevance to disability. Sci World J 11:1726–1734. doi: 10.1100/2011/172893 CrossRefGoogle Scholar
  51. 51.
    Politis M, Wu K, Loane C et al (2010) Staging of serotonergic dysfunction in Parkinson’s disease: an in vivo 11C-DASB PET study. Neurobiol Dis 40:216–221. doi: 10.1016/j.nbd.2010.05.028 PubMedCrossRefGoogle Scholar
  52. 52.
    Politis M, Wu K, Loane C et al (2010) Depressive symptoms in PD correlate with higher 5-HTT binding in raphe and limbic structures. Neurology 75:1920–1927. doi: 10.1212/WNL.0b013e3181feb2ab PubMedCrossRefGoogle Scholar
  53. 53.
    Politis M, Loane C, Wu K et al (2011) Serotonergic mediated body mass index changes in Parkinson’s disease. Neurobiol Dis 43:609–615. doi: 10.1016/j.nbd.2011.05.009 PubMedCrossRefGoogle Scholar
  54. 54.
    Loane C, Wu K, Bain P et al (2013) Serotonergic loss in motor circuitries correlates with severity of action-postural tremor in PD. Neurology 80:1850–1855PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Politis M, Wu K, Loane C et al (2014) Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients. J Clin Invest 124:1340–1349. doi: 10.1172/JCI71640 PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Niccolini F, Loane C, Politis M (2014) Dyskinesias in Parkinson’s disease: views from positron emission tomography studies. Eur J Neurol 21(694–699):e39–e43. doi: 10.1111/ene.12362 Google Scholar
  57. 57.
    Politis M, Wu K, Loane C et al (2012) Serotonin neuron loss and nonmotor symptoms continue in Parkinson’s patients treated with dopamine grafts. Sci Transl Med 4:128ra41. doi: 10.1126/scitranslmed.3003391 PubMedCrossRefGoogle Scholar
  58. 58.
    Politis M, Wu K, Loane C et al (2010) Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci Transl Med 2:38ra46. doi: 10.1126/scitranslmed.3000976 PubMedCrossRefGoogle Scholar
  59. 59.
    Politis M, Oertel WH, Wu K et al (2011) Graft-induced dyskinesias in Parkinson’s disease: high striatal serotonin/dopamine transporter ratio. Mov Disord 26:1997–2003. doi: 10.1002/mds.23743 PubMedCrossRefGoogle Scholar
  60. 60.
    Hellwig S, Amtage F, Kreft A et al (2012) [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology 79:1314–1322. doi: 10.1212/WNL.0b013e31826c1b0a PubMedCrossRefGoogle Scholar
  61. 61.
    Prodoehl J, Li H, Planetta PJ et al (2013) Diffusion tensor imaging of Parkinson’s disease, atypical parkinsonism, and essential tremor. Mov Disord 28:1816–1822. doi: 10.1002/mds.25491 PubMedCrossRefGoogle Scholar
  62. 62.
    Hara K, Watanabe H, Ito M et al (2014) Potential of a new MRI for visualizing cerebellar involvement in progressive supranuclear palsy. Parkinsonism Relat Disord 20:157–161. doi: 10.1016/j.parkreldis.2013.10.007 PubMedCrossRefGoogle Scholar
  63. 63.
    Salvatore C, Cerasa A, Castiglioni I et al (2014) Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and progressive supranuclear palsy. J Neurosci Methods 222:230–237. doi: 10.1016/j.jneumeth.2013.11.016 PubMedCrossRefGoogle Scholar
  64. 64.
    Cherubini A, Morelli M, Nisticó R et al (2014) Magnetic resonance support vector machine discriminates between Parkinson disease and progressive supranuclear palsy. Mov Disord 29:266–269. doi: 10.1002/mds.25737 PubMedCrossRefGoogle Scholar
  65. 65.
    Lipp A, Trbojevic R, Paul F et al (2013) Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic Parkinson’s disease. Neuroimage Clin 3:381–387. doi: 10.1016/j.nicl.2013.09.006 PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Baudrexel S, Seifried C, Penndorf B et al (2014) The value of putaminal diffusion imaging versus 18-fluorodeoxyglucose positron emission tomography for the differential diagnosis of the Parkinson variant of multiple system atrophy. Mov Disord 29:380–387. doi: 10.1002/mds.25749 PubMedCrossRefGoogle Scholar
  67. 67.
    Chen S, Tan H, Wu Z et al (2014) Imaging of olfactory bulb and gray matter volumes in brain areas associated with olfactory function in patients with Parkinson’s disease and multiple system atrophy. Eur J Radiol 83:564–570. doi: 10.1016/j.ejrad.2013.11.024 PubMedCrossRefGoogle Scholar
  68. 68.
    Matsuura K, Maeda M, Yata K et al (2013) Neuromelanin magnetic resonance imaging in Parkinson’s disease and multiple system atrophy. Eur Neurol 70:70–77. doi: 10.1159/000350291 PubMedCrossRefGoogle Scholar
  69. 69.
    Niccolini F, Politis M (2014) Neuroimaging in Huntington’s disease. World J Radiol 6:301–312. doi: 10.4329/wjr.v6.i6.301 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Tabrizi SJ, Scahill RI, Owen G et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12:637–649. doi: 10.1016/S1474-4422(13)70088-7 PubMedCrossRefGoogle Scholar
  71. 71.
    Sánchez-Castañeda C, Squitieri F, Di Paola M et al (2014) The role of iron in gray matter degeneration in Huntington’s disease: a magnetic resonance imaging study. Hum Brain Mapp. doi: 10.1002/hbm.22612 Google Scholar
  72. 72.
    Di Paola M, Phillips OR, Sanchez-Castaneda C et al (2014) MRI measures of corpus callosum iron and myelin in early Huntington’s disease. Hum Brain Mapp 35:3143–3151. doi: 10.1002/hbm.22391 PubMedCrossRefGoogle Scholar
  73. 73.
    Domínguez DJF, Egan GF, Gray MA et al (2013) Multi-modal neuroimaging in premanifest and early Huntington’s disease: 18 month longitudinal data from the IMAGE-HD study. PLoS One 8:e74131. doi: 10.1371/journal.pone.0074131 CrossRefGoogle Scholar
  74. 74.
    Georgiou-Karistianis N, Poudel GR, Domínguez DJF et al (2013) Functional and connectivity changes during working memory in Huntington’s disease: 18 month longitudinal data from the IMAGE-HD study. Brain Cogn 83:80–91. doi: 10.1016/j.bandc.2013.07.004 PubMedCrossRefGoogle Scholar
  75. 75.
    Tang CC, Feigin A, Ma Y et al (2013) Metabolic network as a progression biomarker of premanifest Huntington’s disease. J Clin Invest 123:4076–4088. doi: 10.1172/JCI69411 PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Unschuld PG, Joel SE, Liu X et al (2012) Impaired cortico-striatal functional connectivity in prodromal Huntington’s disease. Neurosci Lett 514:204–209. doi: 10.1016/j.neulet.2012.02.095 PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Poudel GR, Egan GF, Churchyard A et al (2014) Abnormal synchrony of resting state networks in premanifest and symptomatic Huntington disease: the IMAGE-HD study. J Psychiatry Neurosci 39:87–96PubMedCentralPubMedGoogle Scholar
  78. 78.
    Politis M, Pavese N, Tai YF et al (2011) Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum Brain Mapp 32:258–270PubMedCrossRefGoogle Scholar
  79. 79.
    McConathy J, Sheline YI (2014) Imaging biomarkers associated with cognitive decline: a review. Biol Psychiatry. doi: 10.1016/j.biopsych.2014.08.024 PubMedGoogle Scholar
  80. 80.
    Hardy J (2006) Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimers Dis 9:151–153PubMedGoogle Scholar
  81. 81.
    Adlard PA, Tran BA, Finkelstein DI et al (2014) A review of β-amyloid neuroimaging in Alzheimer’s disease. Front Neurosci 8:327. doi: 10.3389/fnins.2014.00327 PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Benzinger TLS, Blazey T, Jack CR et al (2013) Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease. Proc Natl Acad Sci USA 110:E4502–E4509. doi: 10.1073/pnas.1317918110 PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Cho H, Seo SW, Kim J-H et al (2013) Amyloid deposition in early onset versus late onset Alzheimer’s disease. J Alzheimers Dis 35:813–821. doi: 10.3233/JAD-121927 PubMedGoogle Scholar
  84. 84.
    Lim YY, Maruff P, Pietrzak RH et al (2014) Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer’s disease. Brain 137:221–231. doi: 10.1093/brain/awt286 PubMedCrossRefGoogle Scholar
  85. 85.
    Kung HF, Choi SR, Qu W et al (2010) 18F stilbenes and styrylpyridines for PET imaging of A beta plaques in Alzheimer’s disease: a miniperspective. J Med Chem 53:933–941. doi: 10.1021/jm901039z PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Ong KT, Villemagne VL, Bahar-Fuchs A et al (2014) Aβ imaging with 18F-florbetaben in prodromal Alzheimer’s disease: a prospective outcome study. J Neurol Neurosurg Psychiatr. doi: 10.1136/jnnp-2014-308094 Google Scholar
  87. 87.
    Hatashita S, Yamasaki H, Suzuki Y et al (2014) [18F]Flutemetamol amyloid-beta PET imaging compared with [11C]PIB across the spectrum of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41:290–300. doi: 10.1007/s00259-013-2564-y PubMedCrossRefGoogle Scholar
  88. 88.
    Beach TG, Schneider JA, Sue LI et al (2014) Theoretical impact of Florbetapir (18F) amyloid imaging on diagnosis of Alzheimer dementia and detection of preclinical cortical amyloid. J Neuropathol Exp Neurol 73:948–953. doi: 10.1097/NEN.0000000000000114 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Fleisher AS, Chen K, Quiroz YT et al (2012) Florbetapir PET analysis of amyloid-β deposition in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional study. Lancet Neurol 11:1057–1065. doi: 10.1016/S1474-4422(12)70227-2 PubMedCrossRefGoogle Scholar
  90. 90.
    Doraiswamy PM, Sperling RA, Johnson K et al (2014) Florbetapir F 18 amyloid PET and 36-month cognitive decline:a prospective multicenter study. Mol Psychiatry 19:1044–1051. doi: 10.1038/mp.2014.9 PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Xia C-F, Arteaga J, Chen G et al (2013) [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9:666–676. doi: 10.1016/j.jalz.2012.11.008 PubMedCrossRefGoogle Scholar
  92. 92.
    Chien DT, Szardenings AK, Bahri S et al (2014) Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J Alzheimers Dis 38:171–184. doi: 10.3233/JAD-130098 PubMedGoogle Scholar
  93. 93.
    Maruyama M, Shimada H, Suhara T et al (2013) Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79:1094–1108. doi: 10.1016/j.neuron.2013.07.037 PubMedCrossRefGoogle Scholar
  94. 94.
    Okamura N, Furumoto S, Fodero-Tavoletti MT et al (2014) Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain 137:1762–1771. doi: 10.1093/brain/awu064 PubMedCrossRefGoogle Scholar
  95. 95.
    Mattsson N, Tosun D, Insel PS et al (2014) Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer’s disease and mild cognitive impairment. Brain 137:1550–1561. doi: 10.1093/brain/awu043 PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Teipel S, Heinsen H, Amaro E et al (2014) Cholinergic basal forebrain atrophy predicts amyloid burden in Alzheimer’s disease. Neurobiol Aging 35:482–491. doi: 10.1016/j.neurobiolaging.2013.09.029 PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Jack CR, Wiste HJ, Knopman DS et al (2014) Rates of β-amyloid accumulation are independent of hippocampal neurodegeneration. Neurology 82:1605–1612. doi: 10.1212/WNL.0000000000000386 PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Prestia A, Caroli A, van der Flier WM et al (2013) Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology 80:1048–1056. doi: 10.1212/WNL.0b013e3182872830 PubMedCrossRefGoogle Scholar
  99. 99.
    Toledo JB, Weiner MW, Wolk DA et al (2014) Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition. Acta Neuropathol Commun 2:26. doi: 10.1186/2051-5960-2-26 PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    McKeith IG (2006) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. J Alzheimers Dis 9:417–423PubMedGoogle Scholar
  101. 101.
    Siderowf A, Pontecorvo MJ, Shill HA et al (2014) PET imaging of amyloid with Florbetapir F 18 and PET imaging of dopamine degeneration with 18F-AV-133 (florbenazine) in patients with Alzheimer’s disease and Lewy body disorders. BMC Neurol 14:79. doi: 10.1186/1471-2377-14-79 PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Binnewijzend MAA, Kuijer JPA, van der Flier WM et al (2014) Distinct perfusion patterns in Alzheimer’s disease, frontotemporal dementia and dementia with Lewy bodies. Eur Radiol 24:2326–2333. doi: 10.1007/s00330-014-3172-3 PubMedCrossRefGoogle Scholar
  103. 103.
    Josephs KA (2008) Frontotemporal dementia and related disorders: deciphering the enigma. Ann Neurol 64:4–14. doi: 10.1002/ana.21426 PubMedCrossRefGoogle Scholar
  104. 104.
    Dukart J, Mueller K, Horstmann A et al (2011) Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS One 6:e18111. doi: 10.1371/journal.pone.0018111 PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Villemagne VL, Ong K, Mulligan RS et al (2011) Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med 52:1210–1217. doi: 10.2967/jnumed.111.089730 PubMedCrossRefGoogle Scholar
  106. 106.
    Chhatwal JP, Sperling RA (2012) Functional MRI of mnemonic networks across the spectrum of normal aging, mild cognitive impairment, and Alzheimer’s disease. J Alzheimers Dis 31(Suppl 3):S155–S167. doi: 10.3233/JAD-2012-120730 PubMedCentralPubMedGoogle Scholar
  107. 107.
    Sheline YI, Raichle ME (2013) Resting state functional connectivity in preclinical Alzheimer’s disease. Biol Psychiatry 74:340–347. doi: 10.1016/j.biopsych.2012.11.028 PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Putcha D, Brickhouse M, O’Keefe K et al (2011) Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s disease signature regions in non-demented elderly adults. J Neurosci 31:17680–17688. doi: 10.1523/JNEUROSCI.4740-11.2011 PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Moshé SL, Perucca E, Ryvlin P, Tomson T (2014) Epilepsy: new advances. Lancet. doi: 10.1016/S0140-6736(14)60456-6 Google Scholar
  110. 110.
    Abela E, Rummel C, Hauf M et al (2014) Neuroimaging of epilepsy: lesions, networks, oscillations. Clin Neuroradiol 24:5–15. doi: 10.1007/s00062-014-0284-8 PubMedCrossRefGoogle Scholar
  111. 111.
    Cataldi M, Avoli M, de Villers-Sidani E (2013) Resting state networks in temporal lobe epilepsy. Epilepsia 54:2048–2059. doi: 10.1111/epi.12400 PubMedCrossRefGoogle Scholar
  112. 112.
    Chen S, Wu X, Lui S et al (2012) Resting-state fMRI study of treatment-naïve temporal lobe epilepsy patients with depressive symptoms. Neuroimage 60:299–304. doi: 10.1016/j.neuroimage.2011.11.092 PubMedCrossRefGoogle Scholar
  113. 113.
    Theodore WH, Wiggs EA, Martinez AR et al (2012) Serotonin 1A receptors, depression, and memory in temporal lobe epilepsy. Epilepsia 53:129–133. doi: 10.1111/j.1528-1167.2011.03309.x PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Martinez A, Finegersh A, Cannon DM et al (2013) The 5-HT1A receptor and 5-HT transporter in temporal lobe epilepsy. Neurology 80:1465–1471. doi: 10.1212/WNL.0b013e31828cf809 PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Storti SF, Galazzo BI, Del Felice A et al (2013) Combining ESI, ASL and PET for quantitative assessment of drug-resistant focal epilepsy. Neuroimage. doi: 10.1016/j.neuroimage.2013.06.028 PubMedGoogle Scholar
  116. 116.
    Theodore WH, Martinez AR, Khan OI et al (2012) PET of serotonin 1A receptors and cerebral glucose metabolism for temporal lobectomy. J Nucl Med 53:1375–1382. doi: 10.2967/jnumed.112.103093 PubMedCrossRefGoogle Scholar
  117. 117.
    Vivash L, Gregoire M-C, Lau EW et al (2013) 18F-flumazenil: a γ-aminobutyric acid A-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med 54:1270–1277. doi: 10.2967/jnumed.112.107359 PubMedCrossRefGoogle Scholar
  118. 118.
    Chugani HT, Luat AF, Kumar A et al (2013) α-[11C]-Methyl-l-tryptophan–PET in 191 patients with tuberous sclerosis complex. Neurology 81:674–680. doi: 10.1212/WNL.0b013e3182a08f3f PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Tiwari VN, Kumar A, Chakraborty PK, Chugani HT (2012) Can diffusion tensor imaging (DTI) identify epileptogenic tubers in tuberous sclerosis complex? Correlation with α-[11C]methyl-l-tryptophan ([11C] AMT) positron emission tomography (PET). J Child Neurol 27:598–603. doi: 10.1177/0883073811422751 PubMedCrossRefGoogle Scholar
  120. 120.
    Butler T, Ichise M, Teich AF et al (2013) Imaging inflammation in a patient with epilepsy due to focal cortical dysplasia. J Neuroimaging 23:129–131. doi: 10.1111/j.1552-6569.2010.00572.x PubMedCrossRefGoogle Scholar
  121. 121.
    Wintermark P, Lechpammer M, Warfield SK et al (2013) Perfusion imaging of focal cortical dysplasia using arterial spin labeling: correlation with histopathological vascular density. J Child Neurol 28:1474–1482. doi: 10.1177/0883073813488666 PubMedCrossRefGoogle Scholar
  122. 122.
    Stocchetti N (2014) Traumatic brain injury: problems and opportunities. Lancet Neurol 13:14–16. doi: 10.1016/S1474-4422(13)70280-1 PubMedCrossRefGoogle Scholar
  123. 123.
    Hong YT, Veenith T, Dewar D et al (2014) Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol 71:23–31. doi: 10.1001/jamaneurol.2013.4847 PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Malkki H (2014) Traumatic brain injury: PET imaging detects amyloid deposits after TBI. Nat Rev Neurol 10:3. doi: 10.1038/nrneurol.2013.250 PubMedCrossRefGoogle Scholar
  125. 125.
    Mitsis EM, Riggio S, Kostakoglu L et al (2014) Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury. Transl Psychiatry 4:e441. doi: 10.1038/tp.2014.91 PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Kawai N, Kawanishi M, Kudomi N et al (2013) Detection of brain amyloid β deposition in patients with neuropsychological impairment after traumatic brain injury: PET evaluation using Pittsburgh Compound-B. Brain Inj 27:1026–1031. doi: 10.3109/02699052.2013.794963 PubMedCrossRefGoogle Scholar
  127. 127.
    Ramlackhansingh AF, Brooks DJ, Greenwood RJ et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70:374–383PubMedCrossRefGoogle Scholar
  128. 128.
    Iraji A, Benson RR, Welch RD et al (2014) Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed based analyses. J Neurotrauma. doi: 10.1089/neu.2014.3610 Google Scholar
  129. 129.
    Nathan DE, Yeh PH, French LM et al (2014) Exploring variations in functional connectivity of the resting state default mode network in mild traumatic brain injury. Brain Connect. doi: 10.1089/brain.2014.0273 PubMedGoogle Scholar
  130. 130.
    Abbas K, Shenk TE, Poole VN et al (2014) Alteration of default mode network in high school football athletes due to repetitive sub-concussive mTBI—a resting state fMRI study. Brain Connect. doi: 10.1089/brain.2014.0279 PubMedGoogle Scholar
  131. 131.
    Mishra AM, Bai X, Sanganahalli BG et al (2014) Decreased resting functional connectivity after traumatic brain injury in the rat. PLoS One 9:e95280. doi: 10.1371/journal.pone.0095280 PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Ling JM, Klimaj S, Toulouse T, Mayer AR (2013) A prospective study of gray matter abnormalities in mild traumatic brain injury. Neurology 81:2121–2127. doi: 10.1212/01.wnl.0000437302.36064.b1 PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Eierud C, Craddock RC, Fletcher S et al (2014) Neuroimaging after mild traumatic brain injury: review and meta-analysis. Neuroimage Clin 4:283–294. doi: 10.1016/j.nicl.2013.12.009 PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Yuh EL, Cooper SR, Mukherjee P et al (2014) Diffusion tensor imaging for outcome prediction in mild traumatic brain injury: a TRACK-TBI study. J Neurotrauma 31:1457–1477. doi: 10.1089/neu.2013.3171 PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Ilvesmäki T, Luoto TM, Hakulinen U et al (2014) Acute mild traumatic brain injury is not associated with white matter change on diffusion tensor imaging. Brain 137:1876–1882. doi: 10.1093/brain/awu095 PubMedCrossRefGoogle Scholar
  136. 136.
    Fozouni N, Chopp M, Nejad-Davarani SP et al (2013) Characterizing brain structures and remodeling after TBI based on information content, diffusion entropy. PLoS One 8:e76343. doi: 10.1371/journal.pone.0076343 PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Sharp DJ, Beckmann CF, Greenwood R et al (2011) Default mode network and structural connectivity after traumatic brain injury. Brain 134:2233–2247PubMedCrossRefGoogle Scholar
  138. 138.
    Jilka SR, Scott G, Hamt T et al (2014) Damage to the salience network and interactions with the default mode network. J Neurosci 34:10798–10807PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Politis M, Giannetti P, Su P et al (2012) Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 79:523–530. doi: 10.1212/WNL.0b013e3182635645 PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Giannetti P, Politis M, Su P et al (2014) Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome. Brain. doi: 10.1093/brain/awu331 PubMedPubMedCentralGoogle Scholar
  141. 141.
    Giannetti P, Politis M, Su P et al (2014) Microglia activation in multiple sclerosis black holes predicts outcome in progressive patients: an in vivo [(11)C](R)-PK11195-PET pilot study. Neurobiol Dis 65:203–210. doi: 10.1016/j.nbd.2014.01.018 PubMedCrossRefGoogle Scholar
  142. 142.
    Oh U, Fujita M, Ikonomidou VN et al (2011) Translocator protein PET imaging for glial activation in multiple sclerosis. J Neuroimmune Pharmacol 6:354–361. doi: 10.1007/s11481-010-9243-6 PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Takano A, Piehl F, Hillert J et al (2013) In vivo TSPO imaging in patients with multiple sclerosis: a brain PET study with [18F]FEDAA1106. EJNMMI Res 3:30. doi: 10.1186/2191-219X-3-30 PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Colasanti A, Guo Q, Muhlert N et al (2014) In vivo assessment of brain white matter inflammation in multiple sclerosis with 18F-PBR111 PET. J Nucl Med 55:1112–1118. doi: 10.2967/jnumed.113.135129 PubMedCrossRefGoogle Scholar
  145. 145.
    Kiferle L, Politis M, Muraro PA, Piccini P (2011) Positron emission tomography imaging in multiple sclerosis-current status and future applications. Eur J Neurol 18:226–231. doi: 10.1111/j.1468-1331.2010.03154.x PubMedCrossRefGoogle Scholar
  146. 146.
    Stankoff B, Freeman L, Aigrot M-S et al (2011) Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4′-methylaminophenyl)-6-hydroxybenzothiazole. Ann Neurol 69:673–680. doi: 10.1002/ana.22320 PubMedCrossRefGoogle Scholar
  147. 147.
    Londoño AC, Mora CA (2014) Nonconventional MRI biomarkers for in vivo monitoring of pathogenesis in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 1:e45. doi: 10.1212/NXI.0000000000000045 PubMedCentralPubMedCrossRefGoogle Scholar
  148. 148.
    Klawiter EC (2013) Current and new directions in MRI in multiple sclerosis. Continuum (Minneap Minn) 19:1058–1073. doi: 10.1212/01.CON.0000433283.00221.37 Google Scholar
  149. 149.
    Deoni SCL, Rutt BK, Jones DK (2007) Investigating the effect of exchange and multicomponent T(1) relaxation on the short repetition time spoiled steady-state signal and the DESPOT1 T(1) quantification method. J Magn Reson Imaging 25:570–578. doi: 10.1002/jmri.20836 PubMedCrossRefGoogle Scholar
  150. 150.
    Deoni SCL, Rutt BK, Jones DK (2008) Investigating exchange and multicomponent relaxation in fully-balanced steady-state free precession imaging. J Magn Reson Imaging 27:1421–1429. doi: 10.1002/jmri.21079 PubMedCrossRefGoogle Scholar
  151. 151.
    Kitzler HH, Su J, Zeineh M et al (2012) Deficient MWF mapping in multiple sclerosis using 3D whole-brain multi-component relaxation MRI. Neuroimage 59:2670–2677. doi: 10.1016/j.neuroimage.2011.08.052 PubMedCentralPubMedCrossRefGoogle Scholar
  152. 152.
    Kearney H, Rocca MA, Valsasina P et al (2014) Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Mult Scler 20:72–80. doi: 10.1177/1352458513492245 PubMedCentralPubMedCrossRefGoogle Scholar
  153. 153.
    Luo J, Yablonskiy DA, Hildebolt CF et al (2014) Gradient echo magnetic resonance imaging correlates with clinical measures and allows visualization of veins within multiple sclerosis lesions. Mult Scler 20:349–355. doi: 10.1177/1352458513495935 PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Sbardella E, Tona F, Petsas N, Pantano P (2013) DTI measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Mult Scler Int 2013:671730. doi: 10.1155/2013/671730 PubMedCentralPubMedGoogle Scholar
  155. 155.
    Filippi M, Preziosa P, Pagani E et al (2013) Microstructural magnetic resonance imaging of cortical lesions in multiple sclerosis. Mult Scler 19:418–426. doi: 10.1177/1352458512457842 PubMedCrossRefGoogle Scholar
  156. 156.
    Harrison DM, Shiee N, Bazin P-L et al (2013) Tract-specific quantitative MRI better correlates with disability than conventional MRI in multiple sclerosis. J Neurol 260:397–406. doi: 10.1007/s00415-012-6638-8 PubMedCentralPubMedCrossRefGoogle Scholar
  157. 157.
    Temel S, Keklikoğlu HD, Kekliğkoğlu HD et al (2013) Diffusion tensor magnetic resonance imaging in patients with multiple sclerosis and its relationship with disability. Neuroradiol J 26:3–17PubMedCrossRefGoogle Scholar
  158. 158.
    Stromillo ML, Giorgio A, Rossi F et al (2013) Brain metabolic changes suggestive of axonal damage in radiologically isolated syndrome. Neurology 80:2090–2094. doi: 10.1212/WNL.0b013e318295d707 PubMedCrossRefGoogle Scholar
  159. 159.
    Bertholdo D, Watcharakorn A, Castillo M (2013) Brain proton magnetic resonance spectroscopy: introduction and overview. Neuroimaging Clin N Am 23:359–380. doi: 10.1016/j.nic.2012.10.002 PubMedCrossRefGoogle Scholar
  160. 160.
    Rovira A, Alonso J (2013) 1H magnetic resonance spectroscopy in multiple sclerosis and related disorders. Neuroimaging Clin N Am 23:459–474. doi: 10.1016/j.nic.2013.03.005 PubMedCrossRefGoogle Scholar
  161. 161.
    Llufriu S, Kornak J, Ratiney H et al (2014) Magnetic resonance spectroscopy markers of disease progression in multiple sclerosis. JAMA Neurol 71:840–847. doi: 10.1001/jamaneurol.2014.895 PubMedCrossRefGoogle Scholar
  162. 162.
    Choi I-Y, Lee S-P, Denney DR, Lynch SG (2011) Lower levels of glutathione in the brains of secondary progressive multiple sclerosis patients measured by 1H magnetic resonance chemical shift imaging at 3 T. Mult Scler 17:289–296. doi: 10.1177/13524585103840 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lorenzo Rocchi
    • 1
  • Flavia Niccolini
    • 1
  • Marios Politis
    • 1
  1. 1.Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King’s College LondonLondonUK

Personalised recommendations