Skip to main content

Advertisement

Log in

Experimental evidence of temperature-induced bleaching in two fluorescence morphs of a Red Sea mesophotic coral

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral bleaching, as one of the major threats to the well-being of coral reefs worldwide, has been extensively studied. However, corals from mesophotic coral ecosystems (MCEs), found at 30 to 150 m depth and considered as a potential refuge, have not yet been well studied experimentally under thermal stress. As mesophotic corals are also highly fluorescent, and fluorescence under heat stress is known to undergo change, we examined the involvement of fluorescence during heat-induced bleaching, by incorporating both high- and low-fluorescence morphs in our experiments. We collected colonies of the mesophotic coral Alveopora ocellata and subjected them to elevated temperatures in both winter and summer in controlled laboratory experiments. We followed their physiological response and their bleaching at a high sampling resolution (every 48 h following the temperature ramping period). We found that A. ocellata bleached after a short-term (14 days) thermal stress of +4 °C above ambient sea temperature during the summer, but did not bleach during the winter despite the elevated temperature (+5 °C; max temperature of 32 °C and 28 °C, respectively). After experiencing temperatures higher than 29.5 °C, the peak summer temperature, the corals gradually lost their algal symbionts during the summer experiment, while exhibiting an increase in symbiont density during the winter experiment. A similar response was also observed in chlorophyll a concentration, host fluorescence intensity, and maximal quantum yield of PSII (Fv/Fm). Throughout the experiments (in both seasons and treatments), the high-fluorescence corals presented lower zooxanthellae densities, higher cellular chlorophyll a concentration, and up to sixfold higher fluorescence. The differences found between the two morphs suggest that fluorescence may be favorable under thermal stress, strengthening the possibility of using coral fluorescence as a noninvasive monitoring tool for early detection of bleaching. This demonstration of a bleaching process in a mesophotic coral indicates the vulnerability of MCEs to the increase, in recent decades, in the frequency and intensity of temperature anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bellworthy J, Fine M (2017) Beyond peak summer temperatures, branching corals in the Gulf of Aqaba are resilient to thermal stress but sensitive to high light. Coral Reefs 36:1071–1082

    Article  Google Scholar 

  • Bellworthy J, Menoud M, Krueger T, Meibom A, Fine M (2019) Developmental carryover effects of ocean warming and acidification in corals from a potential climate refugium, the Gulf of Aqaba. J Exp Biol 222:jeb186940

    PubMed  Google Scholar 

  • Ben-Zvi O, Eyal G, Loya Y (2019) Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation. Sci Rep 9:5245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bollati E, D’Angelo C, Alderdice R, Pratchett M, Ziegler M, Wiedenmann J (2020) Optical feedback loop involving dinoflagellate symbiont and scleractinian host drives colorful coral bleaching. Curr Biol 30:2433-2445.e2433

    Article  CAS  PubMed  Google Scholar 

  • Bongaerts P, Smith TB (2019) Beyond the “Deep Reef Refuge” hypothesis: a conceptual framework to characterize persistence at depth. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 881–895

    Chapter  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo ME, Hoegh-Guldberg O (2010) Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR, Hoegh-Guldberg O (2017) Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci Adv 3:e1602373

    Article  PubMed  PubMed Central  Google Scholar 

  • Bou-Abdallah F, Chasteen ND, Lesser MP (2006) Quenching of superoxide radicals by green fluorescent protein. Biochim Biophys Acta 1760:1690–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge TCL, Beaman RJ, Bongaerts P, Muir PR, Ekins M, Sih T (2019) The Great Barrier Reef and Coral Sea. In: Loya Y, Puglise KA, Bridge TC (eds) Mesophotic coral ecosystems. Springer, New York, pp 351–367

    Chapter  Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138

    Article  Google Scholar 

  • Bunkley-Williams L, Morelock J, Williams EH (1991) Lingering effects of the 1987 mass bleaching of Puerto Rican coral reefs in mid to late 1988. J Aquat Anim Health 3:242–247

    Article  Google Scholar 

  • Cabaitan PC, Quimpo TJR, Dumalagan EE, Munar JC, Calleja MA, Olavides RDD, Go KT, Albelda R, Cabactulan D, Tinacba EJC, Doctor A, Villanoy CL, Siringan FP (2019) The Phillipines. In: Loya Y, Poglise K, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 265–284

    Chapter  Google Scholar 

  • Cohen I, Dubinsky Z (2015) Long term photoacclimation responses of the coral Stylophora pistillata to reciprocal deep to shallow transplantation: photosynthesis and calcification. Front Mar Sci 2:45

    Article  Google Scholar 

  • Coles SL, Jokiel PL, Lewis CR (1976) Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac Sci 30:159–166

    Google Scholar 

  • Costa CF, Sassi R, Amaral FD (2005) Annual cycle of symbiotic dinoflagellates from three species of scleractinian corals from coastal reefs of northeastern Brazil. Coral Reefs 24:191–193

    Article  Google Scholar 

  • Courtial L, Ferrier-Pagès C, Jacquet S, Rodolfo-Metalpa R, Reynaud S, Rottier C, Houlbrèque F (2017) Effects of temperature and UVR on organic matter fluxes and the metabolic activity of Acropora muricata. Biol Open 6:1190–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunning R, Baker AC (2013) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3:259–262

    Article  Google Scholar 

  • DeSalvo M, Voolstra C, Sunagawa S, Schwarz J, Stillman J, Coffroth M, Szmant A, Medina M (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol Ecol 17:3952–3971

    Article  CAS  PubMed  Google Scholar 

  • Dumalagan EE, Cabaitan PC, Bridge TCL, Go KT, Quimpo TJR, Olavides RDD, Munar JC, Villanoy CL, Siringan FP (2019) Spatial variability in benthic assemblage composition in shallow and upper mesophotic coral ecosystems in the Philippines. Mar Environ Res 150:104772

    Article  CAS  PubMed  Google Scholar 

  • Enríquez S, Méndez ER, Prieto RI (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Article  Google Scholar 

  • Eyal-Shaham L, Eyal G, Tamir R, Loya Y (2016) Reproduction, abundance and survivorship of two Alveopora spp. in the mesophotic reefs of Eilat. Red Sea. Sci Rep 6:20964

    CAS  PubMed  Google Scholar 

  • Eyal G, Tamir R, Kramer N, Eyal-Shaham L, Loya Y (2019) The Red Sea: Israel. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 199–214

    Chapter  Google Scholar 

  • Eyal G, Eyal-Shaham L, Cohen I, Tamir R, Ben-Zvi O, Sinniger F, Loya Y (2016) Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35:91–102

    Article  Google Scholar 

  • Eyal G, Wiedenmann J, Grinblat M, D’Angelo C, Kramarsky-Winter E, Treibitz T, Ben-Zvi O, Shaked Y, Smith TB, Harii S, Denis V, Noyes T, Tamir R, Loya Y (2015) Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS ONE 10:e0128697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fagoonee I, Wilson HB, Hassell MP, Turner JR (1999) The dynamics of zooxanthellae populations: A long-term study in the field. Science 283:843–845

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, New Jersy, pp 270–272

    Book  Google Scholar 

  • Fine M, Gildor H, Genin A (2013) A coral reef refuge in the Red Sea. Glob Change Biol 19:3640–3647

    Article  Google Scholar 

  • Franklin EC, Stat M, Pochon X, Putnam HM, Gates RD (2012) GeoSymbio: a hybrid, cloud-based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium–host symbioses. Mol EcolResour 12:369–373

    Google Scholar 

  • Frossard J, Renaud O (2019) permuco: Permutation tests for regression, (repeated Measures) ANOVA/ANCOVA and comparison of signals

  • Gittins JR, D’Angelo C, Oswald F, Edwards RJ, Wiedenmann J (2015) Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments. Mol Ecol 24:453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason D, Wellington G (1995) Variation in UVB sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Mar Biol 123:693–703

    Article  Google Scholar 

  • Gleason DF (1993) Differential effects of ultraviolet radiation on green and brown morphs of the Caribbean coral Porites astreoides. Limnol Oceanogr 38:1452–1463

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Change Biol 2:495–509

    Article  Google Scholar 

  • Glynn PW, D’Croz L (1990) Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8:181–191

    Article  Google Scholar 

  • Grottoli AG, Tchernov D, Winters G (2017) Physiological and biogeochemical responses of super-corals to thermal stress from the Northern Gulf of Aqaba. Red Sea Front Mar Sci 4:215

    Article  Google Scholar 

  • Highsmith RC, Riggs AC, D’Antonio CM (1980) Survival of hurricane-generated coral fragments and a disturbance model of reef calcification/growth rates. Oecologia 46:322–329

    Article  PubMed  Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG (2010) Theme section on “Mesophotic Coral Ecosystems: Characterization, Ecology, and Management.” Coral Reefs 29:247–251

    Article  Google Scholar 

  • Hoegh-Guldberg O, Smith GJ (1989) The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J Exp Mar Biol Ecol 129:279–303

    Article  Google Scholar 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2263

    Article  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin MC, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83

    Article  CAS  PubMed  Google Scholar 

  • Hume B, D’Angelo C, Burt J, Baker AC, Riegl B, Wiedenmann J (2013) Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: Prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar Pollut Bull 72:313–322

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a1, b1, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant, Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Klueter A, Loh W, Hoegh-Guldberg O, Dove S (2006) Physiological and genetic properties of two fluorescent colour morphs of the coral Montipora digitata. Symbiosis 42:123–134

    CAS  Google Scholar 

  • Kramer N, Eyal G, Tamir R, Loya Y (2019) Upper mesophotic depths in the coral reefs of Eilat, Red Sea, offer suitable refuge grounds for coral settlement. Sci Rep 9:2263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krueger T, Horwitz N, Bodin J, Giovani M-E, Escrig S, Meibom A, Fine M (2017) Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. R Soc Open Sci 4:170038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lang J, Wicklund R, Dill R (1988) Depth-and habitat-related bleaching of zooxanthellate reef organisms near Lee Stocking Island, Exuma Cays, Bahamas. Proc 6th Int Coral Reef Symp 3:269–274

  • Laverick JH, Rogers AD (2018) Experimental evidence for reduced mortality of Agaricia lamarcki on a mesophotic reef. Mar Environ Res 134:37–43

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Article  Google Scholar 

  • Lesser MP, Stochaj WR, Tapley DW, Shick JM (1990) Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232

    Article  Google Scholar 

  • Lesser PM, Shick JM (1989) Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Mar Biol 102:243–255

    Article  Google Scholar 

  • Leutenegger A, D’Angelo C, Matz MV, Denzel A, Oswald F, Salih A, Nienhaus GU, Wiedenmann J (2007) It’s cheap to be colorful. FEBS J 274:2496–2505

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Strong AE, Skirving W (2003) Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos, Transactions American Geophysical Union 84:137–141

    Article  Google Scholar 

  • Longenecker K, Roberts ET, Colin PL (2019) Papua New Guinea. In: Loya Y, Puglise KA, Bridge TC (eds) Mesophotic coral ecosystems. Springer, New York, pp 321–336

    Chapter  Google Scholar 

  • Lyndby NH, Kühl M, Wangpraseurt D (2016) Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue. Sci Rep 6:26599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marubini F, Davies PS (1996) Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol 127:319–328

    Article  CAS  Google Scholar 

  • Nakaema S, Hidaka M (2015) Fluorescent protein content and stress tolerance of two color morphs of the coral Galaxea fascicularis. Galaxea, Journal of Coral Reef Studies 17:1–11

    Article  Google Scholar 

  • Nir O, Gruber DF, Shemesh E, Glasser E, Tchernov D (2014) Seasonal mesophotic coral bleaching of Stylophora pistillata in the Northern Red Sea. PLoS ONE 9:e84968–e84968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer CV, Modi CK, Mydlarz LD (2009) Coral fluorescent proteins as antioxidants. PLoS ONE 4:e7298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quick C, D’Angelo C, Wiedenmann J (2018) Trade-offs associated with photoprotective green fluorescent protein expression as potential drivers of balancing selection for color polymorphism in reef corals. Front Mar Sci 5:11

    Article  Google Scholar 

  • Ramesh CH, Koushik S, Shunmugaraj T, Ramana Murthy MV (2019) A rapid in situ fluorescence census for coral reef monitoring. Reg Stud Mar Sci 28:100575

    Article  Google Scholar 

  • Rocha LA, Pinheiro HT, Shepherd B, Papastamatiou YP, Luiz OJ, Pyle RL, Bongaerts P (2018) Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361:281–284

    Article  CAS  PubMed  Google Scholar 

  • Roth MS, Deheyn DD (2013) Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Sci Rep 3:1421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roth MS, Padilla-Gamiño JL, Pochon X, Bidigare RR, Gates RD, Smith CM, Spalding HL (2015) Fluorescent proteins in dominant mesophotic reef-building corals. Mar Ecol Prog Ser 521:63–79

    Article  CAS  Google Scholar 

  • Semmler RF, Hoot WC, Reaka ML (2017) Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs? Coral Reefs 36:433–444

    Article  Google Scholar 

  • Sheppard C, Sheppard A, Mogg A, Bayley D, Dempsey AC, Roache R, Turner J, Purkis S (2017) Coral bleaching and mortality in the Chagos Archipelago. Atoll Res Bull 1:1–26

    Article  Google Scholar 

  • Slattery M, Lesser MP, Brazeau D, Stokes MD, Leichter JJ (2011) Connectivity and stability of mesophotic coral reefs. J Exp Mar Biol Ecol 408:32–41

    Article  Google Scholar 

  • Smith-Keune C, Dove S (2008) Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral. Mar Biotechnol 10:166–180

    Article  CAS  Google Scholar 

  • Smith TB, Gyory J, Brandt ME, Miller WJ, Jossart J, Nemeth RS (2016) Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob Chang Biol 22:2756–2765

    Article  PubMed  Google Scholar 

  • Stimson J (1997) The annual cycle of density of zooxanthellae in the tissues of field and laboratory-held Pocillopora damicornis (Linnaeus). J Exp Mar Biol Ecol 214:35–48

    Article  Google Scholar 

  • Studivan MS, Voss JD (2018) Population connectivity among shallow and mesophotic Montastraea cavernosa corals in the Gulf of Mexico identifies potential for refugia. Coral Reefs 37:1183–1196

    Article  Google Scholar 

  • Tamir R, Eyal G, Kramer N, Laverick JH, Loya Y (2019) Light environment drives the shallow-to-mesophotic coral community transition. Ecosphere 10:e02839

    Article  Google Scholar 

  • Team RC (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Treibitz T, Neal BP, Kline DI, Beijbom O, Roberts PLD, Mitchell BG, Kriegman D (2015) Wide field-of-view fluorescence imaging of coral reefs. Sci Rep 5:7694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Oppen MJH, Bongaerts PIM, Underwood JN, Peplow LM, Cooper TF (2011) The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol Ecol 20:1647–1660

    Article  PubMed  Google Scholar 

  • Wangpraseurt D, Holm JB, Larkum AWD, Pernice M, Ralph PJ, Suggett DJ, Kühl M (2017) In vivo microscale measurements of light and photosynthesis during coral bleaching: Evidence for the optical feedback loop? Front Microbiol 8:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Winters G, Beer S, Zvi BB, Brickner I, Loya Y (2009) Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella size, pigmentation, location and clade. Mar Ecol Prog Ser 384:107–119

    Article  Google Scholar 

  • Woodley JD, Chornesky EA, Clifford PA, Jackson JBC, Kaufman LS, Knowlton N, Lang JC, Pearson MP, Porter JW, Rooney MC, Rylaarsdam KW, Tunnicliffe VJ, Wahle CM, Wulff JL, Curtis ASG, Dallmeyer MD, Jupp BP, Koehl MAR, Neigel J, Sides EM (1981) Hurricane Allen’s impact on Jamaican coral reefs. Science 214:749–755

    Article  CAS  PubMed  Google Scholar 

  • Zweifler A, Akkaynak D, Mass T, Treibitz T (2017) In situ analysis of coral recruits using fluorescence imaging. Front Mar Sci 4:273

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Interuniversity Institute for Marine Sciences for making their facilities available to us. Sea temperature data were provided by the Israel National Monitoring Program at the Gulf of Eilat (Data available at https://iui-eilat.huji.ac.il/Research/NMPMeteoData.aspx). We thank N. Paz for proofreading, and all of YL’s laboratory members for their ongoing support. We also wish to thank the editors and anonymous reviewers for their thoughtful comments which helped to improve the manuscript. This research was funded by the Israel Science Foundation (ISF) grant agreement No. 1191/16 to YL and by the Ministry of Science, Technology & Space doctoral fellowship grant agreement No. 3-18487 to OBZ. GE was supported by the European Union’s Horizon 2020 research and innovation program under a Marie Skłodowska-Curie (Grant No. 796025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Or Ben-Zvi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Simon Davy

Electronic supplementary material

Below is the link to the electronic supplementary material.

(Supplementary material 1 DOCX 1953 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Zvi, O., Ofer, E., Eyal, G. et al. Experimental evidence of temperature-induced bleaching in two fluorescence morphs of a Red Sea mesophotic coral. Coral Reefs 40, 187–199 (2021). https://doi.org/10.1007/s00338-020-02027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-020-02027-0

Keywords

Navigation