Skip to main content

Beyond the “Deep Reef Refuge” Hypothesis: A Conceptual Framework to Characterize Persistence at Depth

  • Chapter
  • First Online:
Mesophotic Coral Ecosystems

Part of the book series: Coral Reefs of the World ((CORW,volume 12))

Abstract

The rapid deterioration of coral reefs worldwide has led to a growing interest in identifying areas that can offer protection against adverse conditions including coral reef communities at intermediate (~15 to 30 m) and mesophotic (≥30 m) depths. However, various concepts regarding the protective potential of deeper coral reef communities, and subsequent roles in overall reef resilience and persistence, remain poorly defined. Herein, we organize these ideas into an initial conceptual framework and review for scleractinian corals how these ideas may be supported by the limited empirical data that is currently available. We distinguish between the concepts of “depth refuges,” “depth refugia,” and “depth resilience areas,” based on the nature (i.e., avoidance versus resilience) and temporal scope of protection. Although past examples have confirmed the role of mesophotic coral ecosystems as short-term, ecological “refuges,” there is thus far little support that they comprise long-term “refugia.” In contrast, the concept of “deep resilience areas,” reef communities that persist long-term through disturbance by resistance and recovery, remains largely unexplored. In terms of the functional roles of such protected areas in the overall coral reef ecosystem, we distinguish between the concepts of “reseeding” and “local persistence.” The potential to actively reseed shallow reefs may be ecologically important, but only for a small proportion of shared biodiversity, whereas the potential to promote persistence of local biodiversity may apply across a broad range of coral reef species. Although empirical evidence remains very limited, we hope that the incipient conceptual delineations presented here provide a constructive reference for further discussion and research into the ecological importance of deep reef communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth TD, Bridge T, Torda G et al (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J 9:2261–2274

    CAS  Google Scholar 

  • Bak RPM, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curaçao and Bonaire. Coral Reefs 24:475–479

    Article  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430:741

    CAS  PubMed  Google Scholar 

  • Bongaerts P (2011) Bathymetric patterns of genetic variation in the coral-algal symbiosis. Dissertation, The University of Queensland

    Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the ‘Deep Reef Refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bongaerts P, Riginos C, Hay K et al (2011) Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evol Biol 11:303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Frade PR, Ogier J et al (2013a) Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2–60 m) on a Caribbean reef. BMC Evol Biol 13:205

    PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Muir P, Englebert N et al (2013b) Cyclone damage at mesophotic depths on Myrmidon Reef (GBR). Coral Reefs 32:935–935

    Google Scholar 

  • Bongaerts P, Carmichael M, Hay KB et al (2015a) Symbiont zonation plays a crucial role in the vertical distribution of coral species. R Soc Open Sci 2:140297

    PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Frade PR, Hay KB et al (2015b) Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci Rep 5:7652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Riginos C, Brunner R et al (2017) Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci Adv 3:e1602373

    Article  PubMed  PubMed Central  Google Scholar 

  • Brazeau DA, Lesser MP, Slattery M (2013) Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLoS ONE 8:e65845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge TCL, Hughes TP, Guinotte JM, Bongaerts P (2013) Call to protect all coral reefs. Nat Clim Chang 3:528–530

    Google Scholar 

  • Bunkley-Williams LC, Morelock J, Williams EH (1991) Lingering effects of the 1987 mass bleaching of Puerto Rican coral reefs in mid to late 1988. J Aquat Anim Health 3:242–247

    Google Scholar 

  • Cacciapagla C, van Woesik R (2015) Reef-coral refugia in a rapidly changing ocean. Glob Chang Biol 21:2272–2282

    Google Scholar 

  • Coles SL, Jokiel PL, Lewis CR (1976) Thermal tolerance in tropical versus subtropical reef corals. Pac Sci 30:159–166

    Google Scholar 

  • Colin PL (2016) Spotlight on the Palau Island group. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems – a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi, pp 31–36

    Google Scholar 

  • Connell JH (1997) Disturbance and recovery of coral assemblages. Coral Reefs 16:101–113

    Google Scholar 

  • de Boyer Montégut C, Madec G, Fisher AS et al (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003

    Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27–year decline of coral cover on the Great Barrier Reef and its causes. PNAS 109:17995–17999

    PubMed  PubMed Central  Google Scholar 

  • Dollar SJ (1982) Wave stress and coral community structure in Hawaii. Coral Reefs 1:71–81

    Google Scholar 

  • Done TJ (1982) Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs 1:95–107

    Google Scholar 

  • Englebert N, Bongaerts P, Muir P et al (2014) Deepest zooxanthellate corals of the Great Barrier Reef and Coral Sea. Mar Biodivers 45:1–2

    Google Scholar 

  • Feingold J (2001) Responses of three coral communities to the 1997–98 El Niño-Southern Oscillation: Galapagos Islands, Ecuador. Bull Mar Sci 69:61–77

    Google Scholar 

  • Feldman B, Shlesinger T, Loya Y (2018) Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37:201–214

    Google Scholar 

  • Fisk DA, Done TJ (1985) Taxonomic and bathymetric patterns of bleaching in corals, Myrmidon reef. Proc 5th Int Coral Reef Symp 6:149–154

    Google Scholar 

  • Frade PR, Bongaerts P, Winkelhagen AJS et al (2008) In situ photobiology of corals over large depth ranges: a multivariate analysis on the roles of environment, host, and algal symbiont. Limnol Oceanogr 53:2711–2723

    Google Scholar 

  • Frade PR, Reyes-Nivia MC, Faria J et al (2010) Semi-permeable species boundaries in the coral genus Madracis: introgression in a brooding coral system. Mol. Phylogenet Evol 57:1072–1090

    CAS  Google Scholar 

  • Gilmour JP, Smith LD, Heyward AJ, Baird AH, Pratchett MS (2013) Recovery of an isolated coral reef system following severe disturbance. Science 340:69–71

    CAS  PubMed  Google Scholar 

  • Glasl B, Bongaerts P, Elisabeth NH et al (2017) Microbiome variation in corals with distinct depth distribution ranges across a shallow-mesophotic gradient (15–85 m). Coral Reefs 36:447–452

    PubMed  PubMed Central  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Google Scholar 

  • Glynn PW, D’Croz L (1990) Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8:181–191

    Google Scholar 

  • Glynn PW, Veron JEN, Wellington GM (1996) Clipperton Atoll (Eastern Pacific): oceanography, geomorphology, reef-building coral ecology and biogeography. Coral Reefs 15:71–99

    Google Scholar 

  • Glynn PW, Maté JL, Baker AC, Calderon MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: spatial/temporal patterns and comparison with the 1982–1983 event. Bull Mar Sci 69:79–109

    Google Scholar 

  • Glynn PW, Mones AB, Podestá GP et al (2017) El Niño-Southern Oscillation: effects on Eastern Pacific coral reefs and associated biota. In: Glynn WP, Manzello PD, Enochs CI (eds) Coral reefs of the eastern tropical Pacific: persistence and loss in a dynamic environment. Springer, Dordrecht, pp 251–290

    Google Scholar 

  • Goldberg WM (1983) Cay Sal Bank: a biologically impoverished physically controlled environment. Atoll Res Bull 271:1–17

    Google Scholar 

  • Goreau TF, Wells JW (1967) The shallow-water Scleractinia of Jamaica: revised list of species and their vertical distribution ranges. Bull Mar Sci 17:442–453

    Google Scholar 

  • Groves S (2016) Physical drivers of community structure and growth among mesophotic coral ecosystems surrounding St. Thomas, U.S. Virgin Islands. Dissertation, University of the Virgin Islands

    Google Scholar 

  • Groves SH, Holstein DM, Enochs IC et al (2018) Growth rates of Porites astreoides and Orbicella franksi in mesophotic habitats surrounding St. Thomas, US Virgin Islands. Coral Reefs 37(2):345–354

    Google Scholar 

  • Guest JR, Edmunds PJ, Gates RD et al (2018) A framework for identifying and characterising coral reef “oases” against a backdrop of degradation. J Appl Ecol

    Google Scholar 

  • Hammerman NM, Rivera-Vicens RE, Galaska MP et al (2018) Population connectivity of the plating coral Agaricia lamarcki from Southwest Puerto Rico. Coral Reefs 37:183–191

    Google Scholar 

  • Harmelin-Vivien ML (1994) The effects of storms and cyclones on coral reefs: a review. J Coast Res 12:211–231

    Google Scholar 

  • Hernandez-Agreda A, Leggat W, Bongaerts P, Ainsworth TD (2016) The microbial signature provides insight into the mechanistic basis of coral success across reef habitats. mBio 7(4):e00560–e00516

    PubMed  PubMed Central  Google Scholar 

  • Highsmith R, Riggs A, D’Antonio C (1980) Survival of hurricane-generated coral fragments and a disturbance model of reef calcification/growth rates. Oecologia 46:322–329

    PubMed  Google Scholar 

  • Hoegh-Guldberg O, Salvat B (1995) Periodic mass-bleaching and elevated sea temperatures—bleaching of outer reef slope communities in Moorea, French Polynesia. Mar Ecol Prog Ser 121:181–190

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    CAS  PubMed  Google Scholar 

  • Hoeksema BW, Bongaerts P, Baldwin CC (2016) High coral cover at lower mesophotic depths: a dense Agaricia community at the leeward side of Curaçao, Dutch Caribbean. Mar Biodivers 47:67–70

    Google Scholar 

  • Holling CS (1973) Resilience and the stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Google Scholar 

  • Holstein DM, Smith TB, Gyory J, Paris CB (2015) Fertile fathoms: deep reseeding refugia for threatened shallow corals. Sci Rep 5:12407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holstein DM, Smith TB, Vaz AC, Paris CB (2016a) Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35:23–37

    Google Scholar 

  • Holstein DM, Smith TB, Paris CB (2016b) Depth-independent reproduction in the reef coral Porites astreoides from shallow to mesophotic zones. PLoS ONE 11:e0146068

    PubMed  PubMed Central  Google Scholar 

  • Hubbard DK (1992) Hurricane-induced sediment transport in open- shelf tropical systems–an example from St Croix, United States Virgin Islands. J Sediment Petrol 62:946–960

    Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    CAS  PubMed  Google Scholar 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2263

    Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    CAS  PubMed  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR et al (2017a) Coral reefs in the Anthropocene. Nature 546:82–90

    CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Alvarez-Noriega M et al (2017b) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    CAS  PubMed  Google Scholar 

  • Iglesias-Prieto R, Beltran VH, LaJeunesse TC et al (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the Eastern Pacific. Proc R Soc Lond 271:1757–1763

    CAS  Google Scholar 

  • Kahng SE, Maragos JE (2006) The deepest zooxanthellate, scleractinian corals in the world? Coral Reefs 25:254

    Google Scholar 

  • Kahng SE, Garcia R, Spalding HL et al (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Google Scholar 

  • Kahng SE, Copus J, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr Opin Environ Sustain 7:72–81

    Google Scholar 

  • Kahng S, Copus JM, Wagner D (2017) Mesophotic coral ecosystems. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests. Springer, Cham

    Google Scholar 

  • Karnauskas KB, Cohen AL (2012) Equatorial refuge amid tropical warming. Nat Clim Chang 2:530–534

    Google Scholar 

  • Kavousi J, Keppel G (2018) Clarifying the concept of climate change refugia for coral reefs. ICES J Mar Sci 75:43–49

    Google Scholar 

  • Keppel G, Kavousi J (2015) Effective climate change refugia for coral reefs. Glob Chang Biol 21:2829–2830

    PubMed  Google Scholar 

  • Keppel G, Van Niel KP, Wardell-Johnson GW et al (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404

    Google Scholar 

  • Knutson TR, Sirutis JJ, Zhao M et al (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clim 28:7203–7224

    Google Scholar 

  • Kobluk DR, Lysenko MA (1994) “Ring” bleaching in Southern Caribbean Agaricia agaricites during a rapid water cooling. Bull Mar Sci 54:142–150

    Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Google Scholar 

  • Lang JC, Wicklund RI, Dill RF (1988) Depth- and habitat-related bleaching of zooxanthellate reef organisms near Lee Stocking Island, Exuma Cays, Bahamas. Proc 6th Int Coral Reef Symp 3:269–274

    Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Google Scholar 

  • Lesser MP, Slattery M, Stat M et al (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    PubMed  Google Scholar 

  • Liddell WD, Ohlhorst SL (1988) Hard substrata community patterns, 1–120 m, North Jamaica. Palaios 3:413–423

    Google Scholar 

  • Lucas MQ, Stat M, Smith MC et al (2016) Symbiodinium (internal transcribed spacer 2) diversity in the coral host Agaricia lamarcki (Cnidaria: Scleractinia) between shallow and mesophotic reefs in the northern Caribbean (20–70 m). Mar Ecol 37:1079–1087

    Google Scholar 

  • Mann KH, Lazier JRN (1996) Dynamics of marine ecosystems: biological-physical interactions in the oceans. Blackwell Science, London

    Google Scholar 

  • Maragos JE, Jokiel PL (1986) Reef corals of Johnston Atoll: one of the world’s most isolated reefs. Coral Reefs 4:141–150

    Google Scholar 

  • McClanahan TR, Ateweberhan M, Muhando CA et al (2007) Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol Monogr 77:503–525

    Google Scholar 

  • McCook LJ, Almany GR, Berumen ML et al (2009) Management under uncertainty: guide-lines for incorporating connectivity into the protection of coral reefs. Coral Reefs 28:353–366

    Google Scholar 

  • Muir P, Wallace C, Bridge TC, Bongaerts P (2015) Diverse staghorn coral fauna on the mesophotic reefs of north-east Australia. PLoS ONE 10:e0117933

    PubMed  PubMed Central  Google Scholar 

  • Muir P, Marshall PA, Abdulla A, Aguirre JD (2017) Species identity and depth predict bleaching severity in reef building corals: shall the deep inherit the reef? Proc R Soc B 284:20171551

    PubMed  PubMed Central  Google Scholar 

  • Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101

    CAS  PubMed  Google Scholar 

  • Neal BP, Condit C, Liu G et al (2014) When depth is no refuge: cumulative thermal stress increases with depth in Bocas del Toro, Panama. Coral Reefs 33:193–205

    Google Scholar 

  • Olson JB, Kellogg CA (2010) Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microb Ecol 73:17–30

    CAS  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E et al (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    CAS  PubMed  Google Scholar 

  • Prada C, Hellberg ME (2013) Long prereproductive selection and divergence by depth in a Caribbean candelabrum coral. Proc Natl Acad Sci U S A 110:3961–3966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasetia R, Sinniger F, Hashizume K, Harii S (2017) Reproductive biology of the deep brooding coral Seriatopora hystrix: implications for shallow reef recovery. PLoS ONE 12:e0177034

    PubMed  PubMed Central  Google Scholar 

  • Pyle RL, Boland R, Bolick H et al (2016) A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4:e2475

    PubMed  PubMed Central  Google Scholar 

  • Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 2:200–205

    Google Scholar 

  • Reed JK, Farrington S, David A et al (2019) Pulley Ridge, Gulf of Mexico, USA. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 57–69

    Google Scholar 

  • Ridgway T, Hoegh-Guldberg O (2002) Reef recovery in disturbed coral reef ecosystems. Proc 9th Int Coral Reef Symp 2:1117–1121

    Google Scholar 

  • Riegl B, Piller WE (2003) Possible refugia for reefs in time of environmental stress. Int J Earth Sci 92:520–531

    Google Scholar 

  • Rivero-Calle S, Armstrong RA, Soto-Santiago FJ (2009) Biological and physical characteristics of a mesophotic coral reef: Black Jack reef, Vieques, Puerto Rico. Proc 11th Int Coral Reef Symp

    Google Scholar 

  • Robbart ML, Aronson RB, Deslarzes KJP et al (2009) Post-hurricane assessment of sensitive habitats of the Flower Garden Banks vicinity. U.S. Department of Interior, Minerals Managament Service, Gulf of Mexico, OCS Region, New Orleans, 160 p

    Google Scholar 

  • Rogers CS, Miller J (2006) Permanent ‘phase shifts’ or reversible declines in coral cover? Lack of recovery of two coral reefs in St. John, US Virgin Islands. Mar Ecol Prog Ser 306:103–114

    Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci U S A 92:2850–2853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sampayo EM, Francheschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733

    CAS  PubMed  Google Scholar 

  • Semmler RF, Hoot WC, Reaka ML (2017) Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs? Coral Reefs 36(2):433–444

    Google Scholar 

  • Serrano X, Baums IB, O’Reilly K et al (2014) Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol Ecol 23:4226–4240

    CAS  PubMed  Google Scholar 

  • Serrano XM, Baums IB, Smith TB et al (2016) Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci Rep 6:21619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard CRC (1982) Coral populations on reef slopes and their major controls. Mar Ecol Prog Ser 7:83–115

    Google Scholar 

  • Shlesinger Y, Loya Y (2019) Sexual reproduction of scleractinian corals in mesophotic coral ecosystems vs. shallow reefs. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 653–666

    Google Scholar 

  • Shlesinger T, Grinblat M, Rapuano H, Amit T, Loya Y (2018) Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99(2):421–437

    PubMed  Google Scholar 

  • Sinniger F, Morita M, Harii S (2013) Locally extinct’ coral species Seriatopora hystrix found at upper mesophotic depths in Okinawa. Coral Reefs 32:153

    Google Scholar 

  • Sinniger F, Prasetia R, Yorifuji M et al (2017) Seriatopora diversity preserved in upper mesophotic coral ecosystems in Southern Japan. Front Mar Sci 4:155

    Google Scholar 

  • Smith SR, Sarkis S, Murdoch TJT, Weil E, Croquer A, Bates NR, Johnson RJ, de Putron S, Andersson AJ (2013) Threats to coral reefs of Bermuda. In: Sheppard CRC (ed) Coral reefs of the United Kingdom Overseas Territories. Springer, London, pp 173–188

    Google Scholar 

  • Smith TB, Brandtneris VW, Canals M et al (2016a) Potential structuring forces on a shelf edge upper mesophotic coral ecosystem in the US Virgin Islands. Front Mar Sci 3:115

    Google Scholar 

  • Smith TB, Ennis R, Kadison E et al (2016b) The United States Virgin Islands Territorial Coral Reef Monitoring Program, 2016 Annual Report. University of the Virgin Islands, U.S. Virgin Islands, 286 p

    Google Scholar 

  • Smith TB, Gyory J, Brandt ME et al (2016c) Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob Chang Biol 22:2756–2765

    PubMed  Google Scholar 

  • Smith TB, Maté JL, Gyory J (2017) Thermal refuges and refugia for stony corals in the eastern tropical Pacific. In: Glynn WP, Manzello PD, Enochs CI (eds) Coral reefs of the eastern tropical Pacific: persistence and loss in a dynamic environment. Springer Netherlands, Dordrecht, pp 501–515

    Google Scholar 

  • Smith TB, Holstein DM, Ennis RS (2019) Disturbance in mesophotic coral ecosystems and linkages to conservation and management. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 911–929

    Google Scholar 

  • Smith TB, Blondeau J, Nemeth RS, Pittman SJ, Calnan JM, Kadison E, Gass J (2010) Benthic structure and cryptic mortality in a Caribbean mesophotic coral reef bank system, the Hind bank Marine Conservation District, U.S. Virgin Islands. Coral Reefs 29(2):289–308

    Google Scholar 

  • Smith TB, Glynn PW, Maté JL, Toth LT, Gyory J (2014) A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95(6):1663–1673

    PubMed  Google Scholar 

  • van Hooidonk R, Maynard JA, Planes S (2013) Temporary refugia for coral reefs in a warming world. Nat Clim Chang 3:508–511

    Google Scholar 

  • van Oppen MJ, Bongaerts P, Underwood JN et al (2011) The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol Ecol 20:1647–1660

    PubMed  Google Scholar 

  • van Oppen MJ, Bongaerts P, Frade P et al (2018) Adaptation to reef habitats through selection on the coral animal and its associated microbiome. Mol Ecol 27(14):2956–2971

    PubMed  Google Scholar 

  • Vermeij MJA, Bak RPM (2002) How are coral populations structured by light? Marine light regimes and the distribution of Madracis. Mar Ecol Prog Ser 233:105–116

    Google Scholar 

  • Veron JEN, Stafford-Smith M (2000) Corals of the world. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. PNAS 96:8007–8012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein DK, Sharifi A, Klaus JS et al (2016) Coral growth, bioerosion, and secondary accretion of living orbicellid corals from mesophotic reefs in the US Virgin Islands. Mar Ecol Prog Ser 559:45–63

    Google Scholar 

  • White KN, Ohara T, Fujii T et al (2013) Typhoon damage on a shallow mesophotic reef in Okinawa, Japan. PeerJ 1:e151

    PubMed  PubMed Central  Google Scholar 

  • Wilkinson C, Souter D (2008) The status of Caribbean coral reefs after bleaching and hurricanes in 2005. Coral Reef Monitoring Network, Townsville

    Google Scholar 

  • Woodley JD, Chornesky EA, Clifford PA et al (1981) Hurricane Allen’s impact on Jamaican coral reefs. Science 214:749–754

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Pim Bongaerts acknowledges funding from the Australian Research Council’s Discovery Early Career Research Award scheme (Project DE160101433). Tyler Smith acknowledges funding from the Virgin Islands Experimental Program to Stimulate Competitive Research (NSF#0814417), the US National Science Foundation (Award OCE-1447341), and the US Virgin Islands Territorial Coral Reef Monitoring Program. We thank Paul Muir, Javid Kavousi, Madeleine van Oppen, Andrea Gori, Bernhard Riegl, and Greg Torda for providing helpful suggestions and constructive criticism on this manuscript. This is contribution #182 from the Center for Marine and Environmental Studies, University of the Virgin Islands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pim Bongaerts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bongaerts, P., Smith, T.B. (2019). Beyond the “Deep Reef Refuge” Hypothesis: A Conceptual Framework to Characterize Persistence at Depth. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_45

Download citation

Publish with us

Policies and ethics