Skip to main content
Log in

Hip shape is symmetric, non-dependent on limb dominance and gender-specific: implications for femoroacetabular impingement. A 3D CT analysis in asymptomatic subjects

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the reference intervals (RefInt) of the quantitative morphometric parameters of femoroacetabular impingement (FAI) in asymptomatic hips with computed tomography (CT) and determine their dependence on age, side, limb dominance and sex.

Methods

We prospectively included 590 patients and evaluated 1111 hips with semi-automated CT analysis. We calculated overall, side- and sex-specific parameters for imaging signs of cam [omega and alpha angle (α°)] and pincer-type morphology [acetabular version (ACvers), lateral centre-edge angle (LCEA) and cranio-caudal coverage].

Results

Hip shape was symmetrical and did not depend on limb dominance. The 95% RefInt limits were sex-different for all cam-type parameters and extended beyond current abnormal thresholds. Specifically, the upper limits of RefInt for α° at 12:00, 1:30 and 3:00 o’clock positions were 56°, 70° and 58°, respectively, and 45° for LCEA. Acetabular morphology varied between age groups, with a trend toward an LCEA/ACvers increase over time.

Conclusion

Our morphometric measurements can be used to estimate normal hip morphology in asymptomatic individuals. Notably they extended beyond current thresholds used for FAI imaging diagnosis, which was most pronounced for cam-type parameters. We suggest the need to reassess α° RefInt and consider a 60° threshold for the 12:00/3:00 positions and 65-70° for other antero-superior positions.

Key Points

• Hip shape is symmetrical regardless of limb dominance.

• Pincer/cam morphology is frequent in asymptomatic subjects (20 and 71%, respectively).

• LCEA and acetabular version increases with age (5-7° between opposite age groups).

• Femoral morphology is stable after physeal closure (in the absence of pathology).

• Alpha and omega angle thresholds should be set according to sex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACcov:

Acetabular cranio-caudal coverage

ACinc:

Acetabular inclination (Tönnis angle or Sourcil angle)

ACvers:

Acetabular version

Alpha angle:

α°

BMI:

Body mass index

CDA:

Cervico-diaphyseal angle

CT:

Computed tomography

DICOM:

Digital Imaging and Communications in Medicine

FAI:

Femoroacetabular impingement

FHN:

Femoral head-neck

LCEA:

Lateral centre-edge angle

MRI:

Magnetic resonance Imaging

Omega angle:

Ω°

OA:

Osteoarthritis

RefInt:

Reference intervals

SD:

Standard deviation

References

  1. Griffin DR, Dickenson EJ, O'Donnell J et al (2016) The Warwick Agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement. Br J Sports Med 50:1169–1176. https://doi.org/10.1136/bjsports-2016-096743

    Article  CAS  PubMed  Google Scholar 

  2. Agricola R, Waarsing JH, Arden NK et al (2013) Cam impingement of the hip: a risk factor for hip osteoarthritis. Nat Publ Group 9:630–634. https://doi.org/10.1038/nrrheum.2013.114

    Google Scholar 

  3. Hunter DJ, Marin-Pena O (2016) Striving for multidisciplinary consensus on the diagnosis and management of patients with femoroacetabular impingement: more evidence is needed. Br J Sports Med. https://doi.org/10.1136/bjsports-2016-096830

  4. Mascarenhas VV, Rego P, Dantas P et al (2016) Imaging prevalence of femoroacetabular impingement in symptomatic patients, athletes, and asymptomatic individuals: A systematic review. Eur J Radiol 85:73–95. https://doi.org/10.1016/j.ejrad.2015.10.016

    Article  PubMed  Google Scholar 

  5. Ng KCG, Lamontagne M, Beaulé PE (2016) Differences in anatomical parameters between the affected and unaffected hip in patients with bilateral cam-type deformities. Clin Biomech (Bristol, Avon) 33:13–19. https://doi.org/10.1016/j.clinbiomech.2016.01.007

    Article  Google Scholar 

  6. Agricola R, Weinans H (2015) What causes cam deformity and femoroacetabular impingement: still too many questions to provide clear answers: Figure 1. Br J Sports Med bjsports–2015–094773. doi: https://doi.org/10.1136/bjsports-2015-094773

  7. Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CWA (2012) How useful is the alpha angle for discriminating between symptomatic patients with cam-type femoroacetabular impingement and asymptomatic volunteers? Radiology 264:514–521. https://doi.org/10.1148/radiol.12112479

    Article  PubMed  Google Scholar 

  8. Thomas GER, Palmer AJR, Batra RN et al (2014) Subclinical deformities of the hip are significant predictors of radiographic osteoarthritis and joint replacement in women. A 20 year longitudinal cohort study. Osteoarthritis and cartilage / OARS. Osteoarthr Res Soc 22:1504–1510. https://doi.org/10.1016/j.joca.2014.06.038

    Article  CAS  Google Scholar 

  9. Ehrmann C, Rosskopf AB, Pfirrmann CWA, Sutter R (2015) Beyond the alpha angle: Alternative measurements for quantifying cam-type deformities in femoroacetabular impingement. J Magn Reson Imaging. https://doi.org/10.1002/jmri.24861

  10. Mascarenhas VV, Rego PA, Dantas P et al (2016) Cam deformity and the omega angle, a novel quantitative measurement of femoral head-neck morphology: a 3D CT gender analysis in asymptomatic subjects. Eur Radiol. https://doi.org/10.1007/s00330-016-4530-0

  11. Rego PRA, Mascarenhas V, Oliveira FS, et al (2015) Morphologic and angular planning for cam resection in femoro-acetabular impingement: value of the omega angle. Int Orthop (SICOT) 1–7. doi: https://doi.org/10.1007/s00264-015-3053-7

  12. Nötzli HP, Wyss TF, Stoecklin CH et al (2002) The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br Vol 84:556–560

    Article  Google Scholar 

  13. Agricola R, Waarsing JH, Thomas GE et al (2014) Cam impingement: defining the presence of a cam deformity by the alpha angle: data from the CHECK cohort and Chingford cohort. Osteoarthritis Cartil/OARS, Osteoarthr Res Soc 22:218–225. https://doi.org/10.1016/j.joca.2013.11.007

    Article  CAS  Google Scholar 

  14. Larson CM, Moreau-Gaudry A, Kelly BT et al (2014) Are Normal Hips Being Labeled as Pathologic? A CT-based Method for Defining Normal Acetabular Coverage. Clin Orthop Relat Res 473:1247–1254. https://doi.org/10.1007/s11999-014-4055-2

    Article  PubMed Central  Google Scholar 

  15. Hack K, Di Primio G, Rakhra K, Beaulé PE (2010) Prevalence of cam-type femoroacetabular impingement morphology in asymptomatic volunteers. J Bone Joint Surg 92:2436–2444. https://doi.org/10.2106/JBJS.J.01280

    Article  PubMed  Google Scholar 

  16. Lepage-Saucier M, Thiéry C, Larbi A et al (2014) Femoroacetabular impingement: normal values of the quantitative morphometric parameters in asymptomatic hips. Eur Radiol 24:1707–1714. https://doi.org/10.1007/s00330-014-3171-4

    Article  PubMed  Google Scholar 

  17. Tannast M, Hanke MS, Zheng G et al (2015) What are the radiographic reference values for acetabular under- and overcoverage? Clin Orthop Relat Res 473:1234–1246. https://doi.org/10.1007/s11999-014-4038-3

    Article  PubMed  Google Scholar 

  18. Murtha PE, Hafez MA, Jaramaz B, DiGioia AM (2008) Variations in acetabular anatomy with reference to total hip replacement. J Bone Joint Surg Br Vol 90:308–313. https://doi.org/10.1302/0301-620X.90B3.19548

    Article  CAS  Google Scholar 

  19. Stem ES, O’Connor MI, Kransdorf MJ, Crook J (2006) Computed tomography analysis of acetabular anteversion and abduction. Skelet Radiol 35:385–389. https://doi.org/10.1007/s00256-006-0086-4

    Article  Google Scholar 

  20. Hildebrand F, Shin H-O, Flötotto L et al (2012) The prevalence of reduced acetabular anteversion in asymptomatic patients: a retrospective analysis. Z Orthop Unfall 150:601–606. https://doi.org/10.1055/s-0032-1327795

    CAS  PubMed  Google Scholar 

  21. Peterson JB, Doan J, Bomar JD et al (2014) Sex Differences in Cartilage Topography and Orientation of the Developing Acetabulum: Implications for Hip Preservation Surgery. Clin Orthop Relat Res. https://doi.org/10.1007/s11999-014-4109-5

  22. Shi YY, Liu TJ, Zhao Q et al (2010) The normal centre-edge angle of Wiberg in the Chinese population: a population-based cross-sectional study. J Bone Joint Surg Br Vol 92:1144–1147. https://doi.org/10.1302/0301-620X.92B8.23993

    Article  CAS  Google Scholar 

  23. Cawley DT, Guerin SJ, Walsh J et al (2015) The significance of hand dominance in hip osteoarthritis. Semin Arthritis Rheum 44:527–530. https://doi.org/10.1016/j.semarthrit.2014.11.001

    Article  PubMed  Google Scholar 

  24. Christensen CP, Althausen PL, Mittleman MA et al (2003) The nonarthritic hip score: reliable and validated. Clin Orthop Relat Res:75–83. https://doi.org/10.1097/01.blo.0000043047.84315.4b

  25. Röling MA, Visser MI, Oei EHG et al (2015) A quantitative non-invasive assessment of femoroacetabular impingement with CT-based dynamic simulation--cadaveric validation study. BMC Musculoskelet Disord 16:50. https://doi.org/10.1186/s12891-015-0504-7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Klenke FM, Hoffmann DB, Cross BJ, Siebenrock KA (2015) Validation of a standardized mapping system of the hip joint for radial MRA sequencing. Skelet Radiol 44:339–343. https://doi.org/10.1007/s00256-014-2026-z

    Article  Google Scholar 

  27. Philippon MJ, Stubbs AJ, Schenker ML et al (2007) Arthroscopic Management of Femoroacetabular Impingement: Osteoplasty Technique and Literature Review. Am J Sports Med 35:1571–1580. https://doi.org/10.1177/0363546507300258

    Article  PubMed  Google Scholar 

  28. Toogood PA, Skalak A, Cooperman DR (2008) Proximal Femoral Anatomy in the Normal Human Population. Clin Orthop Relat Res 467:876–885. https://doi.org/10.1007/s11999-008-0473-3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Köhnlein W, Ganz R, Impellizzeri FM, Leunig M (2009) Acetabular Morphology: Implications for Joint-preserving Surgery. Clin Orthop Relat Res 467:682–691. https://doi.org/10.1007/s11999-008-0682-9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dandachli W, Kannan V, Richards R et al (2008) Analysis of cover of the femoral head in normal and dysplastic hips: new CT-based technique. J Bone Joint Surg Br Vol 90:1428–1434. https://doi.org/10.1302/0301-620X.90B11.20073

    Article  CAS  Google Scholar 

  31. Leunig M, Jüni P, Werlen S et al (2013) Prevalence of cam and pincer-type deformities on hip MRI in an asymptomatic young Swiss female population: a cross-sectional study. Osteoarthr Cartil 21:544–550. https://doi.org/10.1016/j.joca.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  32. Nho J-H, Lee Y-K, Kim HJ et al (2012) Reliability and validity of measuring version of the acetabular component. J Bone Joint Surg Br Vol 94-B:32–36. https://doi.org/10.1302/0301-620X.94B1.27621

    Article  Google Scholar 

  33. Clohisy JC, Carlisle JC, Trousdale R et al (2008) Radiographic Evaluation of the Hip has Limited Reliability. Clin Orthop Relat Res 467:666–675. https://doi.org/10.1007/s11999-008-0626-4

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jamali AA, Mak W, Wang P et al (2013) What Is Normal Femoral Head/Neck Anatomy? An analysis of radial CT reconstructions in adolescents. Clin Orthop Relat Res 471:3581–3587. https://doi.org/10.1007/s11999-013-3166-5

    Article  PubMed  PubMed Central  Google Scholar 

  35. Monazzam S, Bomar JD, Agashe M, Hosalkar HS (2012) Does femoral rotation influence anteroposterior alpha angle, lateral center-edge angle, and medial proximal femoral angle? A pilot study. Clin Orthop Relat Res 471:1639–1645. https://doi.org/10.1007/s11999-012-2708-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nepple JJ, Brophy RH, Matava MJ et al (2012) Radiographic findings of femoroacetabular impingement in National Football League Combine athletes undergoing radiographs for previous hip or groin pain. Arthroscopy 28:1396–1403. https://doi.org/10.1016/j.arthro.2012.03.005

    Article  PubMed  Google Scholar 

  37. Siebenrock KA, Kalbermatten DF, Ganz R (2003) Effect of pelvic tilt on acetabular retroversion: a study of pelves from cadavers. Clin Orthop Relat Res:241–248. https://doi.org/10.1097/01.blo.0000030508.43495.79

  38. Zaltz I, Kelly BT, Hetsroni I, Bedi A (2012) The crossover sign overestimates acetabular retroversion. Clin Orthop Relat Res 471:2463–2470. https://doi.org/10.1007/s11999-012-2689-5

    Article  PubMed Central  Google Scholar 

  39. Boese CK, Dargel J, Oppermann J et al (2015) The femoral neck-shaft angle on plain radiographs: a systematic review. Skelet Radiol 45:19–28. https://doi.org/10.1007/s00256-015-2236-z

    Article  Google Scholar 

  40. Boese CK, Jostmeier J, Oppermann J et al (2015) The neck shaft angle: CT reference values of 800 adult hips. Skelet Radiol 45:455–463. https://doi.org/10.1007/s00256-015-2314-2

    Article  Google Scholar 

  41. Nakahara I, Takao M, Sakai T et al (2010) Gender differences in 3D morphology and bony impingement of human hips. J Orthop Res 29:333–339. https://doi.org/10.1002/jor.21265

    Article  PubMed  Google Scholar 

  42. Chakraverty JK, Sullivan C, Gan C et al (2013) Cam and pincer femoroacetabular impingement: CT findings of features resembling femoroacetabular impingement in a young population without symptoms. AJR Am J Roentgenol 200:389–395. https://doi.org/10.2214/AJR.12.8546

    Article  PubMed  Google Scholar 

  43. Khanna V, Caragianis A, DiPrimio G et al (2014) Incidence of hip pain in a prospective cohort of asymptomatic volunteers: is the cam deformity a risk factor for hip pain? Am J Sports Med 42:793–797. https://doi.org/10.1177/0363546513518417

    Article  PubMed  Google Scholar 

  44. Kang ACL, Gooding AJ, Coates MH et al (2010) Computed tomography assessment of hip joints in asymptomatic individuals in relation to femoroacetabular impingement. Am J Sports Med 38:1160–1165. https://doi.org/10.1177/0363546509358320

    Article  PubMed  Google Scholar 

  45. Dandachli W, Najefi A, Iranpour F et al (2012) Quantifying the contribution of pincer deformity to femoro-acetabular impingement using 3D computerised tomography. Skelet Radiol. https://doi.org/10.1007/s00256-012-1389-2

  46. Tönnis D, Heinecke A (1999) Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am 81:1747–1770

    Article  PubMed  Google Scholar 

  47. Reikeras O, Bjerkreim I, Kolbenstvedt A (1983) Anteversion of the acetabulum and femoral neck in normals and in patients with osteoarthritis of the hip. Acta Orthop Scand 54:18–23

    Article  CAS  PubMed  Google Scholar 

  48. Tannenbaum EP, Zhang P, Maratt JD et al (2015) A computed tomography study of gender differences in acetabular version and morphology: implications for femoroacetabular impingement. Arthrosc: J Arthrosc Relat Surg 31:1247–1254. https://doi.org/10.1016/j.arthro.2015.02.007

    Article  Google Scholar 

  49. Dandachli W, Ul Islam S, Tippett R et al (2011) Analysis of acetabular version in the native hip: comparison between 2D axial CT and 3D CT measurements. Skelet Radiol 40:877–883. https://doi.org/10.1007/s00256-010-1065-3

    Article  Google Scholar 

  50. Werner CML, Ramseier LE, Ruckstuhl T et al (2012) Normal values of Wiberg’s lateral center-edge angle and Lequesne’s acetabular index–a coxometric update. Skelet Radiol. https://doi.org/10.1007/s00256-012-1420-7

  51. Fowkes LA, Petridou E, Zagorski C et al (2011) Defining a reference range of acetabular inclination and center-edge angle of the hip in asymptomatic individuals. Skelet Radiol 40:1427–1434. https://doi.org/10.1007/s00256-011-1109-3

    Article  Google Scholar 

  52. Wassilew GI, Heller MO, Diederichs G et al (2012) Standardized AP radiographs do not provide reliable diagnostic measures for the assessment of acetabular retroversion. J Orthop Res 30:1369–1376. https://doi.org/10.1002/jor.22086

    Article  PubMed  Google Scholar 

  53. Ayeni OR, Chan K, Whelan DB et al (2014) Diagnosing femoroacetabular impingement from plain radiographs: do radiologists and orthopaedic surgeons differ? Orthop J Sports Med 2:2325967114541414. https://doi.org/10.1177/2325967114541414

    Article  PubMed  PubMed Central  Google Scholar 

  54. Golfam M, Di Primio LA, Beaulé PE et al (2017) Alpha angle measurements in healthy adult volunteers vary depending on the MRI plane acquisition used. Am J Sports Med 45:620–626. https://doi.org/10.2214/AJR.06.0921

    Article  PubMed  Google Scholar 

  55. Vo A, Beaulé PE, Sampaio ML et al (2015) The femoral head-neck contour varies as a function of physeal development. Bone Joint Res 4:17–22. https://doi.org/10.1302/2046-3758.42.2000356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nepple JJ, Riggs CN, Ross JR, Clohisy JC (2014) Clinical presentation and disease characteristics of femoroacetabular impingement are sex-dependent. J Bone Joint Surg 96:1683–1689. https://doi.org/10.2106/JBJS.M.01320

    Article  PubMed  Google Scholar 

  57. Lindner D, Bitar El YF, Jackson TJ et al (2014) Sex-based differences in the clinical presentation of patients with symptomatic hip labral tears. Am J Sports Med 42:1365–1369. https://doi.org/10.1177/0363546514532226

    Article  PubMed  Google Scholar 

  58. Joseph R, Pan X, Cenkus K et al (2016) Sex differences in self-reported hip function up to 2 years after arthroscopic surgery for femoroacetabular impingement. Am J Sports Med 44:54–59. https://doi.org/10.1177/0363546515610535

    Article  PubMed  Google Scholar 

  59. Frank RM, Lee S, Bush-Joseph CA et al (2016) Outcomes for hip arthroscopy according to sex and age: a comparative matched-group analysis. J Bone Joint Surg 98:797–804. https://doi.org/10.2106/JBJS.15.00445

    Article  PubMed  Google Scholar 

  60. Malviya A, Raza A, Jameson S et al (2015) Complications and survival analyses of hip arthroscopies performed in the National Health Service in England: A review of 6,395 cases. Arthroscopy. https://doi.org/10.1016/j.arthro.2014.12.013

  61. Gosvig KK, Jacobsen S, Sonne-Holm S, Gebuhr P (2008) The prevalence of cam-type deformity of the hip joint: a survey of 4151 subjects of the Copenhagen Osteoarthritis Study. Acta Radiol 49:436–441. https://doi.org/10.1080/02841850801935567

    Article  CAS  PubMed  Google Scholar 

  62. Pollard TCB, Villar RN, Norton MR et al (2010) Femoroacetabular impingement and classification of the cam deformity: the reference interval in normal hips. Acta Orthop 81:134–141. https://doi.org/10.3109/17453671003619011

    Article  PubMed  PubMed Central  Google Scholar 

  63. Agricola R, Heijboer MP, Ginai AZ et al (2014) A cam deformity is gradually acquired during skeletal maturation in adolescent and young male soccer players: a prospective study with minimum 2-year follow-up. Am J Sports Med 42:798–806. https://doi.org/10.1177/0363546514524364

    Article  PubMed  Google Scholar 

  64. MacKelvie KJ, Khan KM, McKay HA (2002) Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review. Br J Sports Med 36:250–257 discussion 257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Agricola R, Bessems JHJM, Ginai AZ et al (2012) The development of cam-type deformity in adolescent and young male soccer players. Am J Sports Med 40:1099–1106. https://doi.org/10.1177/0363546512438381

    Article  PubMed  Google Scholar 

  66. Hetsroni I, Torre Dela K, Duke G et al (2013) Sex differences of hip morphology in young adults with hip pain and labral tears. Arthroscopy 29:54–63. https://doi.org/10.1016/j.arthro.2012.07.008

    Article  PubMed  Google Scholar 

  67. Atkinson HD, Johal KS, Willis-Owen C et al (2010) Differences in hip morphology between the sexes in patients undergoing hip resurfacing. J Orthop Surg Res 5:76. https://doi.org/10.1186/1749-799X-5-76

    Article  PubMed  PubMed Central  Google Scholar 

  68. Larson CM, Sikka RS, Sardelli MC et al (2013) Increasing alpha angle is predictive of athletic-related "hip" and “groin” pain in collegiate national football league prospects. YJARS 29:405–410. https://doi.org/10.1016/j.arthro.2012.10.024

    Google Scholar 

  69. Scheidt RB, Galia CR, Diesel CV et al (2014) Prevalence of radiographic markers of femoroacetabular impingement in asymptomatic adults. Rev Col Bras Cir 41:36–42

    Article  PubMed  Google Scholar 

  70. Gosvig KK, Jacobsen S, Sonne-Holm S et al (2010) Prevalence of malformations of the hip joint and their relationship to sex, groin pain, and risk of osteoarthritis: a population-based survey. J Bone Joint Surg Am 92:1162–1169. https://doi.org/10.2106/JBJS.H.01674

    Article  PubMed  Google Scholar 

  71. Laborie LB, Lehmann TG, Engesaeter IO et al (2011) Prevalence of radiographic findings thought to be associated with femoroacetabular impingement in a population-based cohort of 2081 healthy young adults. Radiology 260:494–502. https://doi.org/10.1148/radiol.11102354

    Article  PubMed  Google Scholar 

  72. Laborie LB, Lehmann TG, Engesaeter IO et al (2014) The alpha angle in cam-type femoroacetabular impingement: new reference intervals based on 2038 healthy young adults. Bone Joint J 96-B:449–454. https://doi.org/10.1302/0301-620X.96B4.32194

    Article  CAS  PubMed  Google Scholar 

  73. Ranawat AS, Schulz B, Baumbach SF et al (2011) Radiographic predictors of hip pain in femoroacetabular impingement. HSS Jrnl 7:115–119. https://doi.org/10.1007/s11420-010-9192-x

    Article  Google Scholar 

  74. Bardakos NV, Villar RN (2009) Predictors of progression of osteoarthritis in femoroacetabular impingement: a radiological study with a minimum of ten years follow-up. J Bone Joint Surg Br Vol 91:162–169. https://doi.org/10.1302/0301-620X.91B2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank José Roquette, João Sá, Isabel Vaz and Pedro Patrício for their continuing and enthusiastic support of clinical research at Hospital da Luz and Rúben Teixeira, Ana Filipa Graça, Rogério Lopes, Diogo Corrente, João Novo and Tiago Castela for their efforts toward optimising technical issues and providing patient care.

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasco V. Mascarenhas.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Prof. Dr. José Roquette.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise. No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

Ninety-four of the 590 patients of the current cohort were previously studied and published [Mascarenhas VV, Rego PA, Dantas P, et al (2016) Cam deformity and the omega angle, a novel quantitative measurement of femoral head-neck morphology: a 3D CT gender analysis in asymptomatic subjects. Eur Radiol. doi: 10.1007/s00330-016-4530-0]. Substantially and important different objectives, statistical power and conclusions are therefore withdrawn from this cohort.

Methodology

• prospective

• cross-sectional study

• multicentre study

Electronic supplementary material

ESM 1

(DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascarenhas, V.V., Rego, P., Dantas, P. et al. Hip shape is symmetric, non-dependent on limb dominance and gender-specific: implications for femoroacetabular impingement. A 3D CT analysis in asymptomatic subjects. Eur Radiol 28, 1609–1624 (2018). https://doi.org/10.1007/s00330-017-5072-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5072-9

Keywords

Navigation