European Radiology

, Volume 23, Issue 7, pp 2019–2029 | Cite as

Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study

  • Flavie Bratan
  • Emilie Niaf
  • Christelle Melodelima
  • Anne Laure Chesnais
  • Rémi Souchon
  • Florence Mège-Lechevallier
  • Marc Colombel
  • Olivier RouvièreEmail author



To assess factors influencing prostate cancer detection on multiparametric (T2-weighted, diffusion-weighted, and dynamic contrast-enhanced) MRI.


One hundred and seventy-five patients who underwent radical prostatectomy were included. Pre-operative MRI performed at 1.5 T (n = 71) or 3 T (n = 104), with (n = 58) or without (n = 117) an endorectal coil were independently interpreted by two radiologists. A five-point subjective suspicion score (SSS) was assigned to all focal abnormalities (FAs). MR findings were then compared with whole-mount sections.


Readers identified 192–214/362 cancers, with 130–155 false positives. Detection rates for tumours of <0.5 cc (cm3), 0.5–2 cc and >2 cc were 33–45/155 (21–29 %), 15–19/35 (43–54 %) and 8–9/12 (67–75 %) for Gleason ≤6, 17/27 (63 %), 42–45/51 (82–88 %) and 34/35 (97 %) for Gleason 7 and 4/5 (80 %), 13/14 (93 %) and 28/28 (100 %) for Gleason ≥8 cancers respectively. At multivariate analysis, detection rates were influenced by tumour Gleason score, histological volume, histological architecture and location (P < 0.0001), but neither by field strength nor coils used for imaging. The SSS was a significant predictor of both malignancy of FAs (P < 0.005) and aggressiveness of tumours (P < 0.00001).


Detection rates were significantly influenced by tumour characteristics, but neither by field strength nor coils used for imaging. The SSS significantly stratified the risk of malignancy of FAs and aggressiveness of detected tumours.

Key Points

• Prostate cancer volume, Gleason score, architecture and location are MRI predictors of detection.

• Field strength and coils used do not influence the tumour detection rate.

• Multiparametric MRI is accurate for detecting aggressive tumours.

• A subjective suspicion score can stratify the risk of malignancy and tumour aggressiveness.


Prostate cancer Magnetic resonance imaging Tumour localisation Gleason score Tumour volume 



Multiparametric magnetic resonance imaging

T2w imaging

T2-weighted imaging

Dw imaging

Diffusion-weighted imaging

DCE imaging

Dynamic contrast enhanced imaging


Magnetic resonance spectroscopy


Focal abnormality


False positive


False negative


True positive


Subjective suspicion score


Peripheral zone


Transition zone


Apparent diffusion coefficient


Odds ratio


Prostate-specific antigen


Pelvic phased-array


  1. 1.
    Lindner U, Trachtenberg J, Lawrentschuk N (2010) Focal therapy in prostate cancer: modalities, findings and future considerations. Nat Rev Urol 7:562–571PubMedCrossRefGoogle Scholar
  2. 2.
    Rouviere O, Gelet A, Crouzet S, Chapelon JY (2012) Prostate focused ultrasound focal therapy—imaging for the future. Nat Rev Clin Oncol 9:721-727Google Scholar
  3. 3.
    Kirkham AP, Emberton M, Allen C (2006) How good is MRI at detecting and characterising cancer within the prostate? Eur Urol 50:1163–1174, discussion 1175PubMedCrossRefGoogle Scholar
  4. 4.
    Turkbey B, Pinto PA, Mani H et al (2010) Prostate cancer: value of multiparametric MR imaging at 3T for detection—histopathologic correlation. Radiology 255:89–99PubMedCrossRefGoogle Scholar
  5. 5.
    Sciarra A, Barentsz J, Bjartell A et al (2011) Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur Urol 59:962–977PubMedCrossRefGoogle Scholar
  6. 6.
    Riches SF, Payne GS, Morgan VA et al (2009) MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters. AJR Am J Roentgenol 193:1583–1591PubMedCrossRefGoogle Scholar
  7. 7.
    Heidenreich A (2011) Consensus criteria for the use of magnetic resonance imaging in the diagnosis and staging of prostate cancer: not ready for routine use. Eur Urol 59:495–497PubMedCrossRefGoogle Scholar
  8. 8.
    Girouin N, Mege-Lechevallier F, Tonina Senes A et al (2007) Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol 17:1498–1509PubMedCrossRefGoogle Scholar
  9. 9.
    Cheikh AB, Girouin N, Colombel M et al (2009) Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy. Eur Radiol 19:770–778PubMedCrossRefGoogle Scholar
  10. 10.
    Turkbey B, Mani H, Shah V et al (2011) Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 186:1818–1824PubMedCrossRefGoogle Scholar
  11. 11.
    Rosenkrantz AB, Mendrinos S, Babb JS, Taneja SS (2012) Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. J Urol 187:2032-2038Google Scholar
  12. 12.
    Isebaert S, Van den Bergh L, Haustermans K et al (2012) Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging. doi: 10.1002/jmri.23938
  13. 13.
    Villers A, Puech P, Mouton D, Leroy X, Ballereau C, Lemaitre L (2006) Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol 176:2432–2437PubMedCrossRefGoogle Scholar
  14. 14.
    Langer DL, van der Kwast TH, Evans AJ et al (2008) Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2–sparse versus dense cancers. Radiology 249:900–908PubMedCrossRefGoogle Scholar
  15. 15.
    Tan CH, Wang J, Kundra V (2011) Diffusion weighted imaging in prostate cancer. Eur Radiol 21:593–603PubMedCrossRefGoogle Scholar
  16. 16.
    Kayhan A, Fan X, Oommen J, Oto A (2010) Multi-parametric MR imaging of transition zone prostate cancer: imaging features, detection and staging. World J Radiol 2:180–187PubMedCrossRefGoogle Scholar
  17. 17.
    Heijmink SW, Futterer JJ, Hambrock T et al (2007) Prostate cancer: body-array versus endorectal coil MR imaging at 3T—comparison of image quality, localization, and staging performance. Radiology 244:184–195PubMedCrossRefGoogle Scholar
  18. 18.
    Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757PubMedCrossRefGoogle Scholar
  19. 19.
    Kim CK, Park BK, Kim B (2010) Diffusion-weighted MRI at 3T for the evaluation of prostate cancer. AJR Am J Roentgenol 194:1461–1469PubMedCrossRefGoogle Scholar
  20. 20.
    Dickinson L, Ahmed HU, Allen C et al (2011) Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 59:477–494PubMedCrossRefGoogle Scholar
  21. 21.
    Rouviere O, Hartman RP, Lyonnet D (2006) Prostate MR imaging at high-field strength: evolution or revolution? Eur Radiol 16:276–284PubMedCrossRefGoogle Scholar
  22. 22.
    Shukla-Dave A, Hricak H, Eberhardt SC et al (2004) Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings—initial observations. Radiology 231:717–724PubMedCrossRefGoogle Scholar
  23. 23.
    Akin O, Sala E, Moskowitz CS et al (2006) Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239:784–792PubMedCrossRefGoogle Scholar
  24. 24.
    Lemaitre L, Puech P, Poncelet E et al (2009) Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol 19:470–480PubMedCrossRefGoogle Scholar
  25. 25.
    Oto A, Kayhan A, Jiang Y et al (2010) Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology 257:715–723PubMedCrossRefGoogle Scholar
  26. 26.
    Wang L, Mazaheri Y, Zhang J, Ishill NM, Kuroiwa K, Hricak H (2008) Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 246:168–176PubMedCrossRefGoogle Scholar
  27. 27.
    Hambrock T, Somford DM, Huisman HJ et al (2011) Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259:453–461PubMedCrossRefGoogle Scholar
  28. 28.
    Giles SL, Morgan VA, Riches SF, Thomas K, Parker C, deSouza NM (2011) Apparent diffusion coefficient as a predictive biomarker of prostate cancer progression: value of fast and slow diffusion components. AJR Am J Roentgenol 196:586–591PubMedCrossRefGoogle Scholar
  29. 29.
    Woodfield CA, Tung GA, Grand DJ, Pezzullo JA, Machan JT, Renzulli JF 2nd (2010) Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. AJR Am J Roentgenol 194:W316–W322PubMedCrossRefGoogle Scholar
  30. 30.
    Verma S, Rajesh A, Morales H et al (2011) Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am J Roentgenol 196:374–381PubMedCrossRefGoogle Scholar
  31. 31.
    Oto A, Yang C, Kayhan A et al (2011) Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol 197:1382–1390PubMedCrossRefGoogle Scholar
  32. 32.
    Turkbey B, Shah VP, Pang Y et al (2011) Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 258:488–495PubMedCrossRefGoogle Scholar
  33. 33.
    Zakian KL, Sircar K, Hricak H et al (2005) Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234:804–814PubMedCrossRefGoogle Scholar
  34. 34.
    Crehange G, Parfait S, Liegard M et al (2011) Tumor volume and metabolism of prostate cancer determined by proton magnetic resonance spectroscopic imaging at 3T without endorectal coil reveal potential clinical implications in the context of radiation oncology. Int J Radiat Oncol Biol Phys 80:1087–1094PubMedCrossRefGoogle Scholar
  35. 35.
    Chan TY, Partin AW, Walsh PC, Epstein JI (2000) Prognostic significance of Gleason score 3 + 4 versus Gleason score 4 + 3 tumor at radical prostatectomy. Urology 56:823–827PubMedCrossRefGoogle Scholar
  36. 36.
    Tollefson MK, Leibovich BC, Slezak JM, Zincke H, Blute ML (2006) Long-term prognostic significance of primary Gleason pattern in patients with Gleason score 7 prostate cancer: impact on prostate cancer specific survival. J Urol 175:547–551PubMedCrossRefGoogle Scholar
  37. 37.
    Noguchi M, Stamey TA, McNeal JE, Yemoto CE (2000) Assessment of morphometric measurements of prostate carcinoma volume. Cancer 89:1056–1064PubMedCrossRefGoogle Scholar
  38. 38.
    Schned AR, Wheeler KJ, Hodorowski CA et al (1996) Tissue-shrinkage correction factor in the calculation of prostate cancer volume. Am J Surg Pathol 20:1501–1506PubMedCrossRefGoogle Scholar
  39. 39.
    Stamey TA, McNeal JE, Freiha FS, Redwine E (1988) Morphometric and clinical studies on 68 consecutive radical prostatectomies. J Urol 139:1235–1241PubMedGoogle Scholar
  40. 40.
    Hughes C, Rouviere O, Mege-Lechevallier F, Souchon R, Prost R (2012) Robust alignment of prostate histology slices with quantified accuracy. IEEE Trans Biomed Eng 60:281-291Google Scholar
  41. 41.
    Futterer JJ, Engelbrecht MR, Jager GJ et al (2007) Prostate cancer: comparison of local staging accuracy of pelvic phased-array coil alone versus integrated endorectal-pelvic phased-array coils. Local staging accuracy of prostate cancer using endorectal coil MR imaging. Eur Radiol 17:1055–1065PubMedCrossRefGoogle Scholar
  42. 42.
    Bloch BN, Rofsky NM, Baroni RH, Marquis RP, Pedrosa I, Lenkinski RE (2004) 3 Tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils; Initial experience(1). Acad Radiol 11:863–867PubMedGoogle Scholar
  43. 43.
    Torricelli P, Cinquantini F, Ligabue G, Bianchi G, Sighinolfi P, Romagnoli R (2006) Comparative evaluation between external phased array coil at 3T and endorectal coil at 1.5T: preliminary results. J Comput Assist Tomogr 30:355–361PubMedCrossRefGoogle Scholar
  44. 44.
    Beyersdorff D, Taymoorian K, Knosel T et al (2005) MRI of prostate cancer at 1.5 and 3.0T: comparison of image quality in tumor detection and staging. AJR Am J Roentgenol 185:1214–1220PubMedCrossRefGoogle Scholar
  45. 45.
    Hricak H, White S, Vigneron D et al (1994) Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal—pelvic phased-array coils. Radiology 193:703–709PubMedGoogle Scholar
  46. 46.
    Ahmed HU, Kirkham A, Arya M et al (2009) Is it time to consider a role for MRI before prostate biopsy? Nat Rev 6:197–206Google Scholar
  47. 47.
    Rouviere O, Papillard M, Girouin N et al (2012) Is it possible to model the risk of malignancy of focal abnormalities found at prostate multiparametric MRI? Eur Radiol 22:1149–1157PubMedCrossRefGoogle Scholar
  48. 48.
    Scheidler J, Hricak H, Vigneron DB et al (1999) Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging—clinicopathologic study. Radiology 213:473–480PubMedGoogle Scholar
  49. 49.
    Mazaheri Y, Shukla-Dave A, Hricak H et al (2008) Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging—correlation with pathologic findings. Radiology 246:480–488PubMedCrossRefGoogle Scholar
  50. 50.
    Weinreb JC, Blume JD, Coakley FV et al (2009) Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy–results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 251:122–133PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Flavie Bratan
    • 1
    • 2
  • Emilie Niaf
    • 2
    • 9
  • Christelle Melodelima
    • 3
  • Anne Laure Chesnais
    • 4
  • Rémi Souchon
    • 2
  • Florence Mège-Lechevallier
    • 4
  • Marc Colombel
    • 5
    • 6
    • 7
  • Olivier Rouvière
    • 1
    • 2
    • 5
    • 6
    • 8
    Email author
  1. 1.Department of Urinary and Vascular RadiologyHôpital Edouard Herriot, Hospices Civils de LyonLyonFrance
  2. 2.LabTauInserm, U1032LyonFrance
  3. 3.Laboratoire d’Ecologie Alpine, CNRS UMR 5553Université Joseph FourierGrenobleFrance
  4. 4.Department of PathologyHôpital Edouard Herriot, Hospices Civils de LyonLyonFrance
  5. 5.Université de LyonLyonFrance
  6. 6.Faculté de Médecine Lyon EstUniversité Lyon 1LyonFrance
  7. 7.Department of UrologyHôpital Edouard Herriot, Hospices Civils de LyonLyonFrance
  8. 8.Service de Radiologie Urinaire et Vasculaire, Pavillon PHôpital E. HerriotLyon Cedex 03France
  9. 9.CREATIS, CNRS UMR5220, Inserm U1044, INSA-LyonVilleurbanneFrance

Personalised recommendations