Skip to main content
Log in

Change of microbial community structure and functional gene abundance in nonylphenol-degrading sediment

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biodegradation by autochthonous microbial community is an important way to clean up nonylphenol (NP) from contaminated river sediment. Knowledge of sediment microbial community can aid in our understanding of biological processes related to NP degradation. However, the change in sediment microbial community associated with NP biodegradation remains unclear. The present study investigated the shift in bacterial community structure and NP-degrading gene abundance in response to NP attenuation in river sediment. Sediment microcosms with different levels of 4-NP (0, 100, or 300 μg/g) were constructed. A nearly complete attenuation of NP occurred in the microcosm with 100 μg/g NP after 9 days’ incubation, while a residual NP rate of 8.1 % was observed in the microcosm with 300 μg/g NP after 22 days’ incubation. Illumina MiSeq sequencing analysis indicated that Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes predominated in NP-degrading river sediment. Sediment bacterial community structure varied significantly during NP biodegradation and subsequent incubation, which was affected by the level of added NP. The n-alkane biodegradation (alkB) gene abundance showed a significant variation in each NP-amended microcosm (100 or 300 μg/g), while a significant increase in the single component monooxygenase (sMO) gene abundance only occurred in the microcosm spiked with 300 μg/g NP. This study can provide some new insights toward NP-degrading microbial ecology in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham J, Silambarasan S (2013) Biodegradation of chlorpyrifos and its hydrolyzing metabolite 3,5,6-trichloro-2-pyridinol by Sphingobacterium sp JAS3. Process Biochem 48:1559–1564

    Article  CAS  Google Scholar 

  • Babaei AA, Mahvi AH, Nabizadeh R, Mesdaghiniai A, Nazari Z, Ahmadpour E (2014) Occurrence of nonylphenol an endocrine disrupter in Karun River, Khuzestan Province, Iran. Int J Environ Sci Technol 11:477–482

    Article  CAS  Google Scholar 

  • Berge A, Gasperi J, Rocher V, Gras L, Coursimault A, Moilleron R (2014) Phthalates and alkylphenols in industrial and domestic effluents: case of Paris conurbation (France). Sci Total Environ 488:26–35

    Article  PubMed  Google Scholar 

  • Boyandin AN, Prudnikova SV, Filipenko ML, Khrapov EA, Vasil’ev AD, Volova TG (2012) Biodegradation of polyhydroxyalkanoates by soil microbial communities of different structures and detection of PHA degrading microorganisms. Appl Biochem Microbiol 48:28–36

    Article  CAS  Google Scholar 

  • Bradley PM, Barber LB, Kolpin DW, Mcmahon PB, Chapelle FH (2008) Potential for 4-n-nonylphenol biodegradation in stream sediments. Environ Toxicol Chem 27:260–265

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108(S1):4516–4522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang BV, Chiang BW, Yuan SY (2007) Biodegradation of nonylphenol in soil. Chemosphere 66:1857–1862

    Article  CAS  PubMed  Google Scholar 

  • Chang BV, Liu CL, Yuan SY, Cheng CY, Ding WH (2008) Biodegradation of nonylphenol in mangrove sediment. Int Biodeterior Biodegrad 61:325–330

    Article  CAS  Google Scholar 

  • Chen HW, Liang CH, Wu ZM, Chang EE, Lin TF, Chiang PC, Wang GS (2013) Occurrence and assessment of treatment efficiency of nonylphenol, octylphenol and bisphenol-A in drinking water in Taiwan. Sci Total Environ 449:20–28

    Article  CAS  PubMed  Google Scholar 

  • De Weert J, Vinas M, Grotenhuis T, Rijnaarts H, Langenhoff A (2010) Aerobic nonylphenol degradation and nitro-nonylphenol formation by microbial cultures from sediments. Appl Microbiol Biotechnol 86:761–771

    Article  PubMed Central  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Domene X, Chelinho S, Sousa JP (2010) Effects of nonylphenol on a soil community using microcosms. J Soils Sediments 10:556–567

    Article  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuentes S, Mendez V, Aguila P, Seeger M (2014) Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 98:4781–4794

    Article  CAS  PubMed  Google Scholar 

  • Gabriel FLP, Giger W, Guenther K, Kohler HPE (2005) Differential degradation of nonylphenol isomers by Sphingomonas xenophaga bayram. Appl Environ Microbiol 71:1123–1129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herrera-Gonzalez VE, Ruiz-Ordaz N, Galindez-Mayer J, Juarez-Ramirez C, Santoyo-Tepole F, Montiel EM (2013) Biodegradation of the herbicide propanil, and its 3,4-dichloroaniline by-product in a continuously operated biofilm reactor. World J Microbiol Biotechnol 29:467–474

    Article  CAS  PubMed  Google Scholar 

  • Jiang XT, Peng X, Deng GH, Sheng HF, Wang Y, Zhou HW, Tam NFY (2013) Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb Ecol 66:96–104

    Article  PubMed  Google Scholar 

  • Jontofsohn M, Stoffels M, Hartmann A, Pfister G, Juttner I, Severin-Edmair G, Schramm KW, Schloter M (2002) Influence of nonylphenol on the microbial community of lake sediments in microcosms. Sci Total Environ 285:3–10

    Article  CAS  PubMed  Google Scholar 

  • Liao XB, Chen C, Wang Z, Wan R, Chang CH, Zhang XJ, Xie SG (2013) Pyrosequencing analysis of bacterial communities in drinking water biofilters receiving influents of different types. Process Biochem 48:703–707

    Article  CAS  Google Scholar 

  • Liao XB, Chen C, Zhang JX, Dai Y, Zhang XJ, Xie SG (2014) Operational performance, biomass and microbial community structure: impacts of backwashing on drinking water biofilter. Environ Sci Pollut Res. doi:10.1007/s11356-014-3393-7

    Google Scholar 

  • Lozada M, Itria RF, Figuerola ELM, Babay PA, Gettar RT, de Tullio LA, Erijman L (2004) Bacterial community shifts in nonylphenol polyethoxylates-enriched activated sludge. Water Res 38:2077–2086

    Article  CAS  PubMed  Google Scholar 

  • Lu ZJ, Gan J (2014) Isomer-specific biodegradation of nonylphenol in river sediments and structure-biodegradability relationship. Environ Sci Technol 48:1008–1014

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NT, Hsieh HC, Lin YW, Huang SL (2011) Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresour Technol 102:4232–4240

    Article  CAS  Google Scholar 

  • Pasquini L, Munoz JF, Pons MN, Yvon J, Dauchy X, France X, Le ND, France-Lanord C, Gorner T (2014) Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical evaluation. Sci Total Environ 481:459–468

    Article  CAS  PubMed  Google Scholar 

  • Perez-de-Mora A, Engel M, Schloter M (2011) Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes. Microb Ecol 62:959–972

    Article  CAS  PubMed  Google Scholar 

  • Soares A, Murto M, Guieysse B, Mattiasson B (2006) Biodegradation of nonylphenol in a continuous bioreactor at low temperatures and effects on the microbial population. Appl Microbiol Biotechnol 69:597–606

    Article  CAS  PubMed  Google Scholar 

  • Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN (2008) Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34:1033–1049

    Article  CAS  PubMed  Google Scholar 

  • Stenrod M, Klemsdal SS, Norli HR, Eklo OM (2013) Effects of picoxystrobin and 4-n-nonylphenol on soil microbial community structure and respiration activity. PLoS One 8:e66989

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun WM, Cupples AM (2012) Diversity of five anaerobic toluene-degrading microbial communities investigated using stable isotope probing. Appl Environ Microbiol 78:972–980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun WM, Sun XX, Cupples AM (2014a) Presence, diversity and the enumeration of toluene degrading functional genes (bssA and bamA) across a range of redox conditions and inoculum sources. Biodegradation 25:189–203

    Article  CAS  PubMed  Google Scholar 

  • Sun WM, Sun XX, Cupples AM (2014b) Identification of Desulfosporosinus as toluene-assimilating microorganisms from a methanogenic consortium. Int Biodeterior Biodegrad 88:13–19

    Article  CAS  Google Scholar 

  • Taylor CR, Hardiman EM, Ahmad M, Sainsbury PD, Norris PR, Bugg TDH (2012) Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol 113:521–530

    Article  CAS  PubMed  Google Scholar 

  • Toyama T, Murashita M, Kobayashi K, Kikuchi S, Sei K, Tanaka Y, Ike M, Mori K (2011) Acceleration of nonylphenol and 4-tert-octylphenol degradation in sediment by Phragmites australis and associated rhizosphere bacteria. Environ Sci Technol 45:6524–6530

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang B, Huang B, Jin W, Zhao SM, Li FR, Hu P, Pan XJ (2013) Occurrence, distribution, and sources of six phenolic endocrine disrupting chemicals in the 22 river estuaries around Dianchi Lake in China. Environ Sci Pollut Res 20:3185–3194

    Article  CAS  Google Scholar 

  • Wang Z, Yang YY, Sun WM, Xie SG (2014a) Biodegradation of nonylphenol by two alphaproteobacterial strains in liquid culture and sediment microcosm. Int Biodeterior Biodegrad 92:1–5

    Article  CAS  Google Scholar 

  • Wang Z, Yang YY, Sun WM, Xie SG, Liu Y (2014b) Nonylphenol biodegradation in river sediment and associated shifts in community structures of bacteria and ammonia-oxidizing microorganisms. Ecotoxicol Environ Saf 106:1–5

    Article  CAS  PubMed  Google Scholar 

  • Wu HT, Zhang JX, Mi ZL, Xie SG, Chen C, Zhang XJ (2014) Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6095-7

    PubMed Central  Google Scholar 

  • Wuchter C, Banning E, Mincer TJ, Drenzek NJ, Coolen MJL (2013) Microbial diversity and methanogenic activity of Antrim Shale formation waters from recently fractured wells. Front Microbiol 4:367

    Article  PubMed Central  PubMed  Google Scholar 

  • Xie SG, Wan R, Wang Z, Wang QF (2013) Atrazine biodegradation by Arthrobacter strain DAT1: effect of glucose supplementation and change of the soil microbial community. Environ Sci Pollut Res 20:4078–4084

    Article  CAS  Google Scholar 

  • Xiong JB, Liu YQ, Lin XG, Zhang HY, Zeng J, Hou JZ, Yang YP, Yao TD, Knight R, Chu HY (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14(SI):2457–2466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang XY, Liu MR, Wang ZP, Li Q, Zhang ZL (2013) Determination of 4-tert-octylphenol in surface water samples of Jinan in China by solid phase extraction coupled with GC-MS. J Environ Sci 25:1712–1717

    Article  CAS  Google Scholar 

  • Yang YY, Wang Z, Xie SG (2014a) Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change. Sci Total Environ 470:1184–1188

    Article  PubMed  Google Scholar 

  • Yang YY, Wang J, Liao JQ, Xie SG, Huang Y (2014b) Distribution of naphthalene dioxygenase genes in crude oil-contaminated soils. Microb Ecol 68:785–793. doi:10.1007/s00248-014-0457-7

  • Yikmis M, Steinbuchel A (2012) Historical and recent achievements in the field of microbial degradation of natural and synthetic rubber. Appl Environ Microbiol 78:4543–4551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu Y, Zhang W, Chen GH, Gao YC, Wang JN (2014) Preparation of petroleum-degrading bacterial agent and its application in remediation of contaminated soil in Shengli Oil Field, China. Environ Sci Pollut Res 21:7929–7937

    Article  CAS  Google Scholar 

  • Yuan SY, Yu CH, Chang BV (2004) Biodegradation of nonylphenol in river sediment. Environ Pollut 127:425–430

    Article  CAS  PubMed  Google Scholar 

  • Zhang HH, Huang TL (2013) Archaeal community structure and quantity in the oxygen deficient sediments from three water supply reservoirs. J Pure Appl Microbiol 7:2783–2789

    Google Scholar 

  • Zhang Y, Sei K, Toyama T, Ike M, Zhang J, Yang M, Kamagata Y (2008) Changes of catabolic genes and microbial community structures during biodegradation of nonylphenol ethoxylates and nonylphenol in natural water microcosms. Biochem Eng J 39:288–296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a special fund of the State Key Joint Laboratory of Environment Simulation and Pollution Control (No. 14Y02ESPCP and No. 13K07ESPCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Xie.

Additional information

Zhao Wang and Yuyin Yang contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, Y., He, T. et al. Change of microbial community structure and functional gene abundance in nonylphenol-degrading sediment. Appl Microbiol Biotechnol 99, 3259–3268 (2015). https://doi.org/10.1007/s00253-014-6222-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6222-5

Keywords

Navigation