Skip to main content
Log in

Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nonylphenol (NP) can accumulate in river sediment. Bioaugmentation is an attractive option to dissipate heavy NP pollution in river sediment. In this study, two NP degraders were isolated from crude oil-polluted soil and river sediment. Microcosms were constructed to test their ability to degrade NP in river sediment. The shift in the proportion of NP-degrading genes and bacterial community structure in sediment microcosms were characterized using quantitative PCR assay and terminal restriction fragment length polymorphism analysis, respectively. Phylogenetic analysis indicated that the soil isolate belonged to genus Stenotrophomonas, while the sediment isolate was a Sphingobium species. Both of them could almost completely clean up a high level of NP in river sediment (150 mg/kg NP) in 10 or 14 days after inoculation. An increase in the proportion of alkB and sMO genes was observed in sediment microcosms inoculated with Stenotrophomonas strain Y1 and Sphingobium strain Y2, respectively. Moreover, bioaugmentation using Sphingobium strain Y2 could have a strong impact on sediment bacterial community structure, while inoculation of Stenotrophomonas strain Y1 illustrated a weak impact. This study can provide some new insights towards NP biodegradation and bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bradley PM, Barber LB, Kolpin DW, Mcmahon PB, Chapelle FH (2008) Potential for 4-n-nonylphenol biodegradation in stream sediments. Environ Toxicol Chem 27:260–265

    Article  CAS  Google Scholar 

  • Cirja M, Hommes G, Ivashechkin P, Prell J, Schaffer A, Corvini PFX, Lenz M (2009) Impact of bio-augmentation with Sphingomonas sp strain TTNP3 in membrane bioreactors degrading nonylphenol. Appl Microbiol Biotechnol 84:183–189

    Article  CAS  Google Scholar 

  • Clarke KR. Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. 2nd ed. Plymouth: Plymouth Marine Laboratory, [PRIMER-E]

  • De Weert J, Vinas M, Grotenhuis T, Rijnaarts H, Langenhoff A (2010) Aerobic nonylphenol degradation and nitro-nonylphenol formation by microbial cultures from sediments. Appl Microbiol Biotechnol 86:761–771

    Article  Google Scholar 

  • Gabriel FL, Giger W, Guenther K, Kohler HP (2005) Differential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram. Appl Environ Microbiol 71:1123–1129

    Article  CAS  Google Scholar 

  • Ganesh-Kumar S, Kalimuthu K, Jebakumar SR (2013) A novel bacterium that degrades Aroclor-1254 and its bphC gene encodes an extradiol aromatic ring cleavage dioxygenase (EARCD). Water Air Soil Pollut 224:1587

    Article  Google Scholar 

  • Gao SM, Seo JS, Wang J, Keum YS, Li JQ, Li QX (2013) Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6. Int Biodeterior Biodegrad 79:98–104

    Article  CAS  Google Scholar 

  • Gunasundari D, Muthukumar K (2013) Simultaneous Cr (VI) reduction and phenol degradation using Stenotrophomonas sp isolated from tannery effluent contaminated soil. Environ Sci Pollut Res 20:6563–6573

    Article  CAS  Google Scholar 

  • Guo QW, Wan R, Xie SG (2014) Simazine degradation in bioaugmented soil: urea impact and response of ammonia-oxidizing bacteria and other soil bacterial communities. Environ Sci Pollut Res 21:337–343

    Article  CAS  Google Scholar 

  • Hara A, Baik S, Syutsubo K, Misawa N, Smits THM, van Beilen JB (2004) Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ Microbiol 6:191–197

    Article  CAS  Google Scholar 

  • Jontofsohn M, Stoffels M, Hartmann A, Pfister G, Juttner I, Severin-Edmair G, Schramm KW, Schloter M (2002) Influence of nonylphenol on the microbial community of lake sediments in microcosms. Sci Total Environ 285:3–10

    Article  CAS  Google Scholar 

  • Le Digabel Y, Demaneche S, Benoit Y, Vogel TM, Fayolle-Guichard F (2013) Ethyl tert-butyl ether (ETBE) biodegradation by a syntrophic association of Rhodococcus sp IFP 2042 and Bradyrhizobium sp IFP 2049 isolated from a polluted aquifer. Appl Microbiol Biotechnol 97:10531–10539

    Article  Google Scholar 

  • Louati H, Ben Said O, Got P, Soltani A, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O (2013) Microbial community responses to bioremediation treatments for the mitigation of low-dose anthracene in marine coastal sediments of Bizerte lagoon (Tunisia). Environ Sci Pollut Res 20:300–310

    Article  CAS  Google Scholar 

  • Mehboob F, Junca H, Schraa G, Stams AJM (2009) Growth of Pseudomonas chloritidis mutants AW-1 T on n-alkanes with chlorate as electron acceptor. Appl Microbiol Biotechnol 83:739–747

    Article  CAS  Google Scholar 

  • Nguyen NT, Hsieh HC, Lin YW, Huang SL (2011) Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresour Technol 102:4232–4240

    Article  CAS  Google Scholar 

  • Ogata Y, Toyama T, Yu N, Wang X, Sei K, Ike M (2013a) Occurrence of 4-tert-butylphenol (4-t-BP) biodegradation in an aquatic sample caused by the presence of Spirodela polyrrhiza and isolation of a 4-t-BP-utilizing bacterium. Biodegradation 24:191–202

    Article  CAS  Google Scholar 

  • Ogata Y, Goda S, Toyama T, Sei K, Ike M (2013b) The 4-tert-butylphenol-utilizing bacterium Sphingobium fuliginis OMI can degrade bisphenols via phenolic ring hydroxylation and meta-cleavage pathway. Environ Sci Technol 47:1017–1023

    Article  CAS  Google Scholar 

  • Perez-de-Mora A, Engel M, Schloter M (2011) Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes. Microb Ecol 62:959–972

    Article  CAS  Google Scholar 

  • Porter AW, Hay AG (2007) Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol. Appl Environ Microbiol 73:7373–7379

    Article  CAS  Google Scholar 

  • Porter AW, Campbell BR, Kolvenbach BA, Corvini PFX, Benndorf D, Rivera-Cancel G, Hay AG (2012) Identification of the flavin monooxygenase responsible for ipso substitution of alkyl and alkoxyphenols in Sphingomonas sp. TTNP3 and Sphingobium xenophagum Bayram. Appl Microbiol Biotechnol 94:261–272

    Article  CAS  Google Scholar 

  • Secher C, Lollier M, Jezequel K, Cornu JY, Amalric L, Lebeau T (2013) Decontamination of a polychlorinated biphenyls-contaminated soil by phytoremediation-assisted bioaugmentation. Biodegradation 24:549–562

    Article  CAS  Google Scholar 

  • Sei K, Asano K, Tateishi N, Mori K, Ike M, Fujita M (1999) Design of PCR primers and gene probes for the general detection of bacterial populations capable of degrading aromatic compounds via catechol cleavage pathways. J Biosci Bioeng 88:542–550

    Article  CAS  Google Scholar 

  • Soares A, Guieysse B, Delgado O, Mattiasson B (2003) Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol Lett 25:731–738

    Article  CAS  Google Scholar 

  • Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN (2008) Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34:1033–1049

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4 molecular evolutionary genetics analysis MEGA software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tanase AM, Ionescu R, Chiciudean I, Vassu T, Stoica I (2013) Characterization of hydrocarbon-degrading bacterial strains isolated from oil-polluted soil. Int Biodeterior Biodegrad 84:150–154

    Article  CAS  Google Scholar 

  • Tanghe T, Dhooge W, Verstraete W (1999) Isolation of a bacterial strain able to degrade branched nonylphenol. Appl Environ Microbiol 65:746–751

    CAS  Google Scholar 

  • Toyama T, Murashita M, Kobayashi K, Kikuchi S, Sei K, Tanaka Y, Ike M, Mori K (2011) Acceleration of nonylphenol and 4-tert-octylphenol degradation in sediment by Phragmites australis and associated rhizosphere bacteria. Environ Sci Technol 45:6524–6530

    Article  CAS  Google Scholar 

  • Toyama T, Ojima T, Tanaka Y, Mori K, Morikawa M (2013) Sustainable biodegradation of phenolic endocrine-disrupting chemicals by Phragmites australis-rhizosphere bacteria association. Water Sci Technol 68:522–529

    Article  CAS  Google Scholar 

  • Tribedi P, Sil AK (2013) Bioaugmentation of polyethylene succinate-contaminated soil with Pseudomonas sp AKS2 results in increased microbial activity and better polymer degradation. Environ Sci Pollut Res 20:1318–1326

    Article  CAS  Google Scholar 

  • Wan R, Wang Z, Xie SG (2014a) Dynamics of communities of bacteria and ammonia-oxidizing microorganisms in response to simazine attenuation in agricultural soil. Sci Total Environ 472:502–508

    Article  CAS  Google Scholar 

  • Wan R, Yang YY, Sun WM, Wang Z, Xie SG (2014b) Simazine biodegradation and community structures of ammonia-oxidizing microorganisms in bioaugmented soil: impact of ammonia and nitrate nitrogen sources. Environ Sci Pollut Res 21:3175–3181

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  Google Scholar 

  • Wang Z, Yang YY, Sun WM, Xie SG (2014a) Biodegradation of nonylphenol by two alphaproteobacterial strains in liquid culture and sediment microcosm. Int Biodeterior Biodegrad 92:1–5

    Article  CAS  Google Scholar 

  • Wang Z, Yang YY, Sun WM, Xie SG, Liu Y (2014b) Nonylphenol biodegradation in river sediment and associated shifts in community structures of bacteria and ammonia-oxidizing microorganisms. Ecotox Environ Safe 106:1–5

    Article  CAS  Google Scholar 

  • Wojcieszynska D, Hupert-Kocurek K, Guzik U (2013) Factors affecting activity of catechol 2,3-dioxygenase from 2-chlorophenol-degrading Stenotrophomonas maltophilia strain KB2. Biocatal Biotransform 31:141–147

    Article  CAS  Google Scholar 

  • Xie SG, Wan R, Wang Z, Wang QF (2013) Atrazine biodegradation by Arthrobacter strain DAT1: effect of glucose supplementation and change of the soil microbial community. Environ Sci Pollut Res 20:4078–4084

    Article  CAS  Google Scholar 

  • Yang YY. Wang J. Liao JQ. Xie SG. Huang Y (2014) Distribution of naphthalene dioxygenase genes in crude oil-contaminated soils. Microb Ecol doi: 10.1007/s00248-014-0457-7

  • Yuan SY, Yu CH, Chang BV (2004) Biodegradation of nonylphenol in river sediment. Environ Pollut 127:425–430

    Article  CAS  Google Scholar 

  • Zhang Y, Sei K, Toyama T, Ike M, Zhang J, Yang M, Kamagata Y (2008) Changes of catabolic genes and microbial community structures during biodegradation of nonylphenol ethoxylates and nonylphenol in natural water microcosms. Biochem Eng J 39:288–296

    Article  CAS  Google Scholar 

  • Zhang SY, Wang QF, Xie SG (2012) Stable isotope probing identifies anthracene degraders under methanogenic conditions. Biodegradation 23:221–230

    Article  Google Scholar 

  • Zhang LL, Hu J, Zhu RY, Zhou QW, Chen JM (2013) Degradation of paracetamol by pure bacterial cultures and their microbial consortium. Appl Microbiol Biotechnol 97:3687–3698

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a special fund from State Key Joint Laboratory of Environment Simulation and Pollution Control (No. 14Y02ESPCP) and (No. 13K07ESPCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Xie.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, Y., Sun, W. et al. Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm. Environ Sci Pollut Res 22, 2342–2349 (2015). https://doi.org/10.1007/s11356-014-3625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3625-x

Keywords

Navigation